Complex Lorentz tensors from Real Lorentz tensors #
In this module we define the equivariant semi-linear map from real Lorentz tensors to complex Lorentz tensors.
The map from colors of real Lorentz tensors to complex Lorentz tensors.
Equations
Instances For
The complification of the component index of a real Lorentz tensor to a complex Lorentz tensor.
Equations
- One or more equations did not get rendered due to their size.
Instances For
The semilinear map from real Lorentz tensors to complex Lorentz tensors, defined through basis.
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
realLorentzTensor.toComplex_eq_sum_basis
{n : ℕ}
(c : Fin n → Color)
(v : realLorentzTensor.Tensor c)
:
toComplex v = ∑ i : TensorSpecies.Tensor.ComponentIdx (colorToComplex ∘ c),
((TensorSpecies.Tensor.basis c).repr v) (TensorSpecies.Tensor.ComponentIdx.complexify.symm i) • (TensorSpecies.Tensor.basis (colorToComplex ∘ c)) i
The map toComplex
is injective.
theorem
realLorentzTensor.toComplex_equivariant
{n : ℕ}
{c : Fin n → Color}
(v : realLorentzTensor.Tensor c)
(Λ : Matrix.SpecialLinearGroup (Fin 2) ℂ)
:
The map toComplex
is equivariant.