PhysLean Documentation

PhysLean.Relativity.Tensors.Evaluation

Evaluation of tensor indices #

## The evaluation coefficent.

def TensorSpecies.Tensor.Pure.evalPCoeff {k : Type} [CommRing k] {G : Type} [Group G] {S : TensorSpecies k G} {n : } {c : Fin (n + 1)S.C} (i : Fin (n + 1)) (b : Fin (S.repDim (c i))) (p : Pure S c) :
k

Given a i : Fin (n + 1), a b : Fin (S.repDim (c i)) and a pure tensor p : Pure S c, evalPCoeff i b p is the bth component of p i.

Equations
Instances For
    @[simp]
    theorem TensorSpecies.Tensor.Pure.evalPCoeff_update_self {k : Type} [CommRing k] {G : Type} [Group G] {S : TensorSpecies k G} {n : } {c : Fin (n + 1)S.C} (i : Fin (n + 1)) [inst : DecidableEq (Fin (n + 1))] (b : Fin (S.repDim (c i))) (p : Pure S c) (x : (S.FD.obj { as := c i }).V) :
    evalPCoeff i b (p.update i x) = ((S.basis (c i)).repr x) b
    @[simp]
    theorem TensorSpecies.Tensor.Pure.evalPCoeff_update_succAbove {k : Type} [CommRing k] {G : Type} [Group G] {S : TensorSpecies k G} {n : } {c : Fin (n + 1)S.C} (i : Fin (n + 1)) [inst : DecidableEq (Fin (n + 1))] (j : Fin n) (b : Fin (S.repDim (c i))) (p : Pure S c) (x : (S.FD.obj { as := c (i.succAbove j) }).V) :
    evalPCoeff i b (p.update (i.succAbove j) x) = evalPCoeff i b p

    Evaluation for a pure tensor. #

    noncomputable def TensorSpecies.Tensor.Pure.evalP {k : Type} [CommRing k] {G : Type} [Group G] {S : TensorSpecies k G} {n : } {c : Fin (n + 1)S.C} (i : Fin (n + 1)) (b : Fin (S.repDim (c i))) (p : Pure S c) :

    Given a i : Fin (n + 1), a b : Fin (S.repDim (c i)) and a pure tensor p : Pure S c, evalP i b p is the tensor formed by evaluating the ith index of p at b.

    Equations
    Instances For
      @[simp]
      theorem TensorSpecies.Tensor.Pure.evalP_update_add {k : Type} [CommRing k] {G : Type} [Group G] {S : TensorSpecies k G} {n : } {c : Fin (n + 1)S.C} [inst : DecidableEq (Fin (n + 1))] (i j : Fin (n + 1)) (b : Fin (S.repDim (c i))) (p : Pure S c) (x y : (S.FD.obj { as := c j }).V) :
      evalP i b (p.update j (x + y)) = evalP i b (p.update j x) + evalP i b (p.update j y)
      @[simp]
      theorem TensorSpecies.Tensor.Pure.evalP_update_smul {k : Type} [CommRing k] {G : Type} [Group G] {S : TensorSpecies k G} {n : } {c : Fin (n + 1)S.C} [inst : DecidableEq (Fin (n + 1))] (i j : Fin (n + 1)) (b : Fin (S.repDim (c i))) (p : Pure S c) (r : k) (x : (S.FD.obj { as := c j }).V) :
      evalP i b (p.update j (r x)) = r evalP i b (p.update j x)

      Evaluation for a pure tensor as multilinear map. #

      noncomputable def TensorSpecies.Tensor.Pure.evalPMultilinear {k : Type} [CommRing k] {G : Type} [Group G] {S : TensorSpecies k G} {n : } {c : Fin (n + 1)S.C} (i : Fin (n + 1)) (b : Fin (S.repDim (c i))) :
      MultilinearMap k (fun (i : Fin (n + 1)) => (S.FD.obj { as := c i }).V) (S.Tensor (c i.succAbove))

      The multi-linear map formed by evaluation of an index of pure tensors.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        noncomputable def TensorSpecies.Tensor.evalT {k : Type} [CommRing k] {G : Type} [Group G] {S : TensorSpecies k G} {n : } {c : Fin (n + 1)S.C} (i : Fin (n + 1)) (b : Fin (S.repDim (c i))) :

        Given a i : Fin (n + 1), a b : Fin (S.repDim (c i)) and a tensor t : Tensor S c, evalT i b t is the tensor formed by evaluating the ith index of t at b.

        Equations
        Instances For