PhysLean Documentation

PhysLean.Relativity.Lorentz.Group.Boosts.Basic

Boosts in the Lorentz group #

def LorentzGroup.γ (β : ) :

The Lorentz factor (aka gamma factor or Lorentz term).

Equations
Instances For
    theorem LorentzGroup.γ_sq (β : ) ( : |β| < 1) :
    γ β ^ 2 = 1 / (1 - β ^ 2)
    @[simp]
    @[simp]
    theorem LorentzGroup.γ_neg (β : ) :
    γ (-β) = γ β
    def LorentzGroup.boost {d : } (i : Fin d) (β : ) ( : |β| < 1) :

    The Lorentz boost with in the space direction i with speed β with |β| < 1.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      theorem LorentzGroup.boost.h {d : } (i : Fin d) (β : ) ( : |β| < 1) :
      (fun (j k : Fin 1 Fin d) => if k = Sum.inl 0 j = Sum.inl 0 then γ β else if k = Sum.inl 0 j = Sum.inr i then -γ β * β else if k = Sum.inr i j = Sum.inl 0 then -γ β * β else if k = Sum.inr i j = Sum.inr i then γ β else if j = k then 1 else 0) LorentzGroup d
      @[simp]
      theorem LorentzGroup.boost_transpose_eq_self {d : } (i : Fin d) {β : } ( : |β| < 1) :
      transpose (boost i β ) = boost i β
      @[simp]
      theorem LorentzGroup.boost_transpose_matrix_eq_self {d : } (i : Fin d) {β : } ( : |β| < 1) :
      (↑(boost i β )).transpose = (boost i β )
      @[simp]
      theorem LorentzGroup.boost_zero_eq_id {d : } (i : Fin d) :
      boost i 0 = 1
      theorem LorentzGroup.boost_inverse {d : } (i : Fin d) {β : } ( : |β| < 1) :
      (boost i β )⁻¹ = boost i (-β)
      @[simp]
      theorem LorentzGroup.boost_inl_0_inl_0 {d : } (i : Fin d) {β : } ( : |β| < 1) :
      (boost i β ) (Sum.inl 0) (Sum.inl 0) = γ β
      @[simp]
      theorem LorentzGroup.boost_inr_self_inr_self {d : } (i : Fin d) {β : } ( : |β| < 1) :
      (boost i β ) (Sum.inr i) (Sum.inr i) = γ β
      @[simp]
      theorem LorentzGroup.boost_inl_0_inr_self {d : } (i : Fin d) {β : } ( : |β| < 1) :
      (boost i β ) (Sum.inl 0) (Sum.inr i) = -γ β * β
      @[simp]
      theorem LorentzGroup.boost_inr_self_inl_0 {d : } (i : Fin d) {β : } ( : |β| < 1) :
      (boost i β ) (Sum.inr i) (Sum.inl 0) = -γ β * β
      theorem LorentzGroup.boost_inl_0_inr_other {d : } {i j : Fin d} {β : } ( : |β| < 1) (hij : j i) :
      (boost i β ) (Sum.inl 0) (Sum.inr j) = 0
      theorem LorentzGroup.boost_inr_other_inl_0 {d : } {i j : Fin d} {β : } ( : |β| < 1) (hij : j i) :
      (boost i β ) (Sum.inr j) (Sum.inl 0) = 0
      theorem LorentzGroup.boost_inr_self_inr_other {d : } {i j : Fin d} {β : } ( : |β| < 1) (hij : j i) :
      (boost i β ) (Sum.inr i) (Sum.inr j) = 0
      theorem LorentzGroup.boost_inr_other_inr_self {d : } {i j : Fin d} {β : } ( : |β| < 1) (hij : j i) :
      (boost i β ) (Sum.inr j) (Sum.inr i) = 0
      theorem LorentzGroup.boost_inr_other_inr {d : } {i j k : Fin d} {β : } ( : |β| < 1) (hij : j i) :
      (boost i β ) (Sum.inr j) (Sum.inr k) = if j = k then 1 else 0
      theorem LorentzGroup.boost_inr_inr_other {d : } {i j k : Fin d} {β : } ( : |β| < 1) (hij : j i) :
      (boost i β ) (Sum.inr k) (Sum.inr j) = if j = k then 1 else 0