PhysLean Documentation

PhysLean.QFT.PerturbationTheory.WickContraction.TimeContract

Time contractions #

noncomputable def WickContraction.timeContract {š“• : FieldSpecification} {φs : List š“•.FieldOp} (φsĪ› : WickContraction φs.length) :

For a list φs of š“•.FieldOp and a Wick contraction φsĪ› the element of the center of š“•.WickAlgebra, φsĪ›.timeContract is defined as the product of timeContract φs[j] φs[k] over contracted pairs {j, k} in φsĪ› with j < k.

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    @[simp]
    theorem WickContraction.timeContract_insert_none {š“• : FieldSpecification} (φ : š“•.FieldOp) (φs : List š“•.FieldOp) (φsĪ› : WickContraction φs.length) (i : Fin φs.length.succ) :
    (insertAndContract φ φsĪ› i none).timeContract = φsĪ›.timeContract

    For a list φs = φ₀…φₙ of š“•.FieldOp, a Wick contraction φsĪ› of φs, an element φ of š“•.FieldOp, and a i ≤ φs.length the following relation holds

    (φsĪ› ↩Λ φ i none).timeContract = φsĪ›.timeContract

    The proof of this result ultimately is a consequence of definitions.

    theorem WickContraction.timeContract_insertAndContract_some {š“• : FieldSpecification} (φ : š“•.FieldOp) (φs : List š“•.FieldOp) (φsĪ› : WickContraction φs.length) (i : Fin φs.length.succ) (j : { x : Fin φs.length // x ∈ φsĪ›.uncontracted }) :
    (insertAndContract φ φsĪ› i (some j)).timeContract = (if i < i.succAbove ↑j then ⟨FieldSpecification.WickAlgebra.timeContract φ φs[↑j], ā‹ÆāŸ© else ⟨FieldSpecification.WickAlgebra.timeContract φs[↑j] φ, ā‹ÆāŸ©) * φsĪ›.timeContract

    For a list φs = φ₀…φₙ of š“•.FieldOp, a Wick contraction φsĪ› of φs, an element φ of š“•.FieldOp, a i ≤ φs.length and a k in φsĪ›.uncontracted, then (φsĪ› ↩Λ φ i (some k)).timeContract is equal to the product of

    The proof of this result ultimately is a consequence of definitions.

    theorem WickContraction.timeContract_insert_some_of_lt {š“• : FieldSpecification} (φ : š“•.FieldOp) (φs : List š“•.FieldOp) (φsĪ› : WickContraction φs.length) (i : Fin φs.length.succ) (k : { x : Fin φs.length // x ∈ φsĪ›.uncontracted }) (ht : FieldSpecification.timeOrderRel φ φs[↑k]) (hik : i < i.succAbove ↑k) :
    ↑(insertAndContract φ φsĪ› i (some k)).timeContract = (FieldStatistic.exchangeSign (š“•.fieldOpStatistic φ)) (FieldStatistic.ofFinset š“•.fieldOpStatistic φs.get ({x ∈ φsĪ›.uncontracted | x < ↑k})) • (FieldSpecification.WickAlgebra.contractStateAtIndex φ φsĪ›.uncontractedListGet ((uncontractedFieldOpEquiv φs φsĪ›) (some k)) * ↑φsĪ›.timeContract)

    For a list φs = φ₀…φₙ of š“•.FieldOp, a Wick contraction φsĪ› of φs, an element φ of š“•.FieldOp, a i ≤ φs.length and a k in φsĪ›.uncontracted such that i ≤ k, with the condition that φ has greater or equal time to φs[k], then (φsĪ› ↩Λ φ i (some k)).timeContract is equal to the product of

    • [anPart φ, φs[k]]ā‚›
    • φsĪ›.timeContract
    • two copies of the exchange sign of φ with the uncontracted fields in φ₀…φₖ₋₁. These two exchange signs cancel each other out but are included for convenience.

    The proof of this result ultimately is a consequence of definitions and timeContract_of_timeOrderRel.

    theorem WickContraction.timeContract_insert_some_of_not_lt {š“• : FieldSpecification} (φ : š“•.FieldOp) (φs : List š“•.FieldOp) (φsĪ› : WickContraction φs.length) (i : Fin φs.length.succ) (k : { x : Fin φs.length // x ∈ φsĪ›.uncontracted }) (ht : ¬FieldSpecification.timeOrderRel φs[↑k] φ) (hik : ¬i < i.succAbove ↑k) :
    ↑(insertAndContract φ φsĪ› i (some k)).timeContract = (FieldStatistic.exchangeSign (š“•.fieldOpStatistic φ)) (FieldStatistic.ofFinset š“•.fieldOpStatistic φs.get ({x ∈ φsĪ›.uncontracted | x ≤ ↑k})) • (FieldSpecification.WickAlgebra.contractStateAtIndex φ φsĪ›.uncontractedListGet ((uncontractedFieldOpEquiv φs φsĪ›) (some k)) * ↑φsĪ›.timeContract)

    For a list φs = φ₀…φₙ of š“•.FieldOp, a Wick contraction φsĪ› of φs, an element φ of š“•.FieldOp, a i ≤ φs.length and a k in φsĪ›.uncontracted such that k < i, with the condition that φs[k] does not have time greater or equal to φ, then (φsĪ› ↩Λ φ i (some k)).timeContract is equal to the product of

    • [anPart φ, φs[k]]ā‚›
    • φsĪ›.timeContract
    • the exchange sign of φ with the uncontracted fields in φ₀…φₖ₋₁.
    • the exchange sign of φ with the uncontracted fields in φ₀…φₖ.

    The proof of this result ultimately is a consequence of definitions and timeContract_of_not_timeOrderRel_expand.

    theorem WickContraction.timeContract_of_not_gradingCompliant {š“• : FieldSpecification} (φs : List š“•.FieldOp) (φsĪ› : WickContraction φs.length) (h : ¬GradingCompliant φs φsĪ›) :
    φsĪ›.timeContract = 0