PhysLean Documentation

PhysLean.Particles.BeyondTheStandardModel.RHN.AnomalyCancellation.Ordinary.Basic

ACC system for SM with RHN (without hypercharge). #

We define the ACC system for the Standard Model (without hypercharge) with right-handed neutrinos.

The ACC system for the SM plus RHN.

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    @[simp]
    @[simp]
    theorem SMRHN.SM_quadraticACCs (n : ) (i : Fin 0) :
    @[simp]
    theorem SMRHN.SM_numberCharges (n : ) :
    @[simp]
    theorem SMRHN.SM_linearACCs (n : ) (i : Fin 3) :
    (SM n).linearACCs i = match i with | 0 => { toFun := fun (S : (SMνCharges n).Charges) => i : Fin n, (6 * S (finProdFinEquiv (0, i)) + 3 * S (finProdFinEquiv (1, i)) + 3 * S (finProdFinEquiv (2, i)) + 2 * S (finProdFinEquiv (3, i)) + S (finProdFinEquiv (4, i)) + S (finProdFinEquiv (5, i))), map_add' := , map_smul' := } | 1 => { toFun := fun (S : (SMνCharges n).Charges) => i : Fin n, (3 * S (finProdFinEquiv (0, i)) + S (finProdFinEquiv (3, i))), map_add' := , map_smul' := } | 2 => { toFun := fun (S : (SMνCharges n).Charges) => i : Fin n, (2 * S (finProdFinEquiv (0, i)) + S (finProdFinEquiv (1, i)) + S (finProdFinEquiv (2, i))), map_add' := , map_smul' := }
    theorem SMRHN.SM.SU2Sol {n : } (S : (SM n).LinSols) :
    theorem SMRHN.SM.SU3Sol {n : } (S : (SM n).LinSols) :
    theorem SMRHN.SM.cubeSol {n : } (S : (SM n).Sols) :
    def SMRHN.SM.chargeToLinear {n : } (S : (SM n).Charges) (hGrav : SMνACCs.accGrav S = 0) (hSU2 : SMνACCs.accSU2 S = 0) (hSU3 : SMνACCs.accSU3 S = 0) :

    An element of charges which satisfies the linear ACCs gives us a element of LinSols.

    Equations
    Instances For
      def SMRHN.SM.linearToQuad {n : } (S : (SM n).LinSols) :

      An element of LinSols which satisfies the quadratic ACCs gives us a element of QuadSols.

      Equations
      Instances For
        def SMRHN.SM.quadToAF {n : } (S : (SM n).QuadSols) (hc : SMνACCs.accCube S.val = 0) :
        (SM n).Sols

        An element of QuadSols which satisfies the quadratic ACCs gives us a element of Sols.

        Equations
        Instances For
          def SMRHN.SM.chargeToQuad {n : } (S : (SM n).Charges) (hGrav : SMνACCs.accGrav S = 0) (hSU2 : SMνACCs.accSU2 S = 0) (hSU3 : SMνACCs.accSU3 S = 0) :

          An element of charges which satisfies the linear and quadratic ACCs gives us a element of QuadSols.

          Equations
          Instances For
            def SMRHN.SM.chargeToAF {n : } (S : (SM n).Charges) (hGrav : SMνACCs.accGrav S = 0) (hSU2 : SMνACCs.accSU2 S = 0) (hSU3 : SMνACCs.accSU3 S = 0) (hc : SMνACCs.accCube S = 0) :
            (SM n).Sols

            An element of charges which satisfies the linear, quadratic and cubic ACCs gives us a element of Sols.

            Equations
            Instances For
              def SMRHN.SM.linearToAF {n : } (S : (SM n).LinSols) (hc : SMνACCs.accCube S.val = 0) :
              (SM n).Sols

              An element of LinSols which satisfies the quadratic and cubic ACCs gives us a element of Sols.

              Equations
              Instances For

                The permutations acting on the ACC system corresponding to the SM with RHN.

                Equations
                Instances For