ACC system for SM with RHN (without hypercharge). #
We define the ACC system for the Standard Model (without hypercharge) with right-handed neutrinos.
@[simp]
theorem
SMRHN.SM_linearACCs
(n : ℕ)
(i : Fin 3)
:
(SM n).linearACCs i = match i with
| 0 =>
{
toFun := fun (S : (SMνCharges n).Charges) =>
∑ i : Fin n,
(6 * S (finProdFinEquiv (0, i)) + 3 * S (finProdFinEquiv (1, i)) + 3 * S (finProdFinEquiv (2, i)) + 2 * S (finProdFinEquiv (3, i)) + S (finProdFinEquiv (4, i)) + S (finProdFinEquiv (5, i))),
map_add' := ⋯, map_smul' := ⋯ }
| 1 =>
{
toFun := fun (S : (SMνCharges n).Charges) =>
∑ i : Fin n, (3 * S (finProdFinEquiv (0, i)) + S (finProdFinEquiv (3, i))),
map_add' := ⋯, map_smul' := ⋯ }
| 2 =>
{
toFun := fun (S : (SMνCharges n).Charges) =>
∑ i : Fin n, (2 * S (finProdFinEquiv (0, i)) + S (finProdFinEquiv (1, i)) + S (finProdFinEquiv (2, i))),
map_add' := ⋯, map_smul' := ⋯ }
@[simp]
theorem
SMRHN.SM_cubicACC_apply
(n : ℕ)
(S : (SMνCharges n).Charges)
:
(SM n).cubicACC S = ∑ i : Fin n,
(6 * (S (finProdFinEquiv (0, i)) * S (finProdFinEquiv (0, i)) * S (finProdFinEquiv (0, i))) + 3 * (S (finProdFinEquiv (1, i)) * S (finProdFinEquiv (1, i)) * S (finProdFinEquiv (1, i))) + 3 * (S (finProdFinEquiv (2, i)) * S (finProdFinEquiv (2, i)) * S (finProdFinEquiv (2, i))) + 2 * (S (finProdFinEquiv (3, i)) * S (finProdFinEquiv (3, i)) * S (finProdFinEquiv (3, i))) + S (finProdFinEquiv (4, i)) * S (finProdFinEquiv (4, i)) * S (finProdFinEquiv (4, i)) + S (finProdFinEquiv (5, i)) * S (finProdFinEquiv (5, i)) * S (finProdFinEquiv (5, i)))
def
SMRHN.SM.chargeToLinear
{n : ℕ}
(S : (SM n).Charges)
(hGrav : SMνACCs.accGrav S = 0)
(hSU2 : SMνACCs.accSU2 S = 0)
(hSU3 : SMνACCs.accSU3 S = 0)
:
An element of charges
which satisfies the linear ACCs
gives us a element of LinSols
.
Equations
- SMRHN.SM.chargeToLinear S hGrav hSU2 hSU3 = { val := S, linearSol := ⋯ }
Instances For
An element of LinSols
which satisfies the quadratic ACCs
gives us a element of QuadSols
.
Equations
- SMRHN.SM.linearToQuad S = { toLinSols := S, quadSol := ⋯ }
Instances For
An element of QuadSols
which satisfies the quadratic ACCs
gives us a element of Sols
.
Equations
- SMRHN.SM.quadToAF S hc = { toQuadSols := S, cubicSol := hc }
Instances For
def
SMRHN.SM.chargeToQuad
{n : ℕ}
(S : (SM n).Charges)
(hGrav : SMνACCs.accGrav S = 0)
(hSU2 : SMνACCs.accSU2 S = 0)
(hSU3 : SMνACCs.accSU3 S = 0)
:
An element of charges
which satisfies the linear and quadratic ACCs
gives us a element of QuadSols
.
Equations
- SMRHN.SM.chargeToQuad S hGrav hSU2 hSU3 = SMRHN.SM.linearToQuad (SMRHN.SM.chargeToLinear S hGrav hSU2 hSU3)
Instances For
def
SMRHN.SM.chargeToAF
{n : ℕ}
(S : (SM n).Charges)
(hGrav : SMνACCs.accGrav S = 0)
(hSU2 : SMνACCs.accSU2 S = 0)
(hSU3 : SMνACCs.accSU3 S = 0)
(hc : SMνACCs.accCube S = 0)
:
An element of charges
which satisfies the linear, quadratic and cubic ACCs
gives us a element of Sols
.
Equations
- SMRHN.SM.chargeToAF S hGrav hSU2 hSU3 hc = SMRHN.SM.quadToAF (SMRHN.SM.chargeToQuad S hGrav hSU2 hSU3) hc
Instances For
An element of LinSols
which satisfies the quadratic and cubic ACCs
gives us a element of Sols
.
Equations
- SMRHN.SM.linearToAF S hc = SMRHN.SM.quadToAF (SMRHN.SM.linearToQuad S) hc
Instances For
The permutations acting on the ACC system corresponding to the SM with RHN.
Equations
- SMRHN.SM.perm n = { group := SMRHN.PermGroup n, groupInst := inferInstance, rep := SMRHN.repCharges, linearInvariant := ⋯, quadInvariant := ⋯, cubicInvariant := ⋯ }