ACC system for SM with RHN and no gravitational anomaly. #
We define the ACC system for the Standard Model with right-handed neutrinos and no gravitational anomaly.
The ACC system for the SM plus RHN with no gravitational anomaly.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
SMRHN.SMNoGrav_cubicACC_apply
(n : ℕ)
(S : (SMνCharges n).Charges)
:
(SMNoGrav n).cubicACC S = ∑ i : Fin n,
(6 * (S (finProdFinEquiv (0, i)) * S (finProdFinEquiv (0, i)) * S (finProdFinEquiv (0, i))) + 3 * (S (finProdFinEquiv (1, i)) * S (finProdFinEquiv (1, i)) * S (finProdFinEquiv (1, i))) + 3 * (S (finProdFinEquiv (2, i)) * S (finProdFinEquiv (2, i)) * S (finProdFinEquiv (2, i))) + 2 * (S (finProdFinEquiv (3, i)) * S (finProdFinEquiv (3, i)) * S (finProdFinEquiv (3, i))) + S (finProdFinEquiv (4, i)) * S (finProdFinEquiv (4, i)) * S (finProdFinEquiv (4, i)) + S (finProdFinEquiv (5, i)) * S (finProdFinEquiv (5, i)) * S (finProdFinEquiv (5, i)))
@[simp]
theorem
SMRHN.SMNoGrav_linearACCs
(n : ℕ)
(i : Fin 2)
:
(SMNoGrav n).linearACCs i = match i with
| 0 =>
{ toFun := fun (S : (SMνCharges n).Charges) =>
∑ i : Fin n, (3 * S (finProdFinEquiv (0, i)) + S (finProdFinEquiv (3, i))),
map_add' := ⋯, map_smul' := ⋯ }
| 1 =>
{ toFun := fun (S : (SMνCharges n).Charges) =>
∑ i : Fin n, (2 * S (finProdFinEquiv (0, i)) + S (finProdFinEquiv (1, i)) + S (finProdFinEquiv (2, i))),
map_add' := ⋯, map_smul' := ⋯ }
@[simp]
def
SMRHN.SMNoGrav.chargeToLinear
{n : ℕ}
(S : (SMNoGrav n).Charges)
(hSU2 : SMνACCs.accSU2 S = 0)
(hSU3 : SMνACCs.accSU3 S = 0)
:
An element of charges
which satisfies the linear ACCs
gives us a element of LinSols
.
Equations
- SMRHN.SMNoGrav.chargeToLinear S hSU2 hSU3 = { val := S, linearSol := ⋯ }
Instances For
An element of QuadSols
which satisfies the quadratic ACCs
gives us a element of LinSols
.
Equations
- SMRHN.SMNoGrav.quadToAF S hc = { toQuadSols := S, cubicSol := hc }
Instances For
def
SMRHN.SMNoGrav.chargeToQuad
{n : ℕ}
(S : (SMNoGrav n).Charges)
(hSU2 : SMνACCs.accSU2 S = 0)
(hSU3 : SMνACCs.accSU3 S = 0)
:
An element of charges
which satisfies the linear and quadratic ACCs
gives us a element of QuadSols
.
Equations
- SMRHN.SMNoGrav.chargeToQuad S hSU2 hSU3 = SMRHN.SMNoGrav.linearToQuad (SMRHN.SMNoGrav.chargeToLinear S hSU2 hSU3)
Instances For
def
SMRHN.SMNoGrav.chargeToAF
{n : ℕ}
(S : (SMNoGrav n).Charges)
(hSU2 : SMνACCs.accSU2 S = 0)
(hSU3 : SMνACCs.accSU3 S = 0)
(hc : SMνACCs.accCube S = 0)
:
An element of charges
which satisfies the linear, quadratic and cubic ACCs
gives us a element of Sols
.
Equations
- SMRHN.SMNoGrav.chargeToAF S hSU2 hSU3 hc = SMRHN.SMNoGrav.quadToAF (SMRHN.SMNoGrav.chargeToQuad S hSU2 hSU3) hc
Instances For
An element of LinSols
which satisfies the quadratic and cubic ACCs
gives us a element of Sols
.
Equations
Instances For
The permutations acting on the ACC system corresponding to the SM with RHN, and no gravitational anomaly.
Equations
- SMRHN.SMNoGrav.perm n = { group := SMRHN.PermGroup n, groupInst := inferInstance, rep := SMRHN.repCharges, linearInvariant := ⋯, quadInvariant := ⋯, cubicInvariant := ⋯ }