Functions on Space d which can be made into distributions #
i. Overview #
In this module, for functions f : Space d → F, we define the property IsDistBounded f.
Functions satisfying this property can be used to create distributions Space d →d[ℝ] F
by integrating them against Schwartz maps.
The condition IsDistBounded f essentially says that f is bounded by a finite sum of terms
of the form c * ‖x + g‖ ^ p for constants c, g and - (d - 1) ≤ p where d is the dimension
of the space.
ii. Key results #
IsDistBounded: The boundedness condition on functionsSpace d → Ffor them to form distributions.IsDistBounded.integrable_space: IffsatisfiesIsDistBounded f, thenfun x => η x • f xis integrable for any Schwartz mapη : 𝓢(Space d, ℝ).IsDistBounded.integrable_time_space: IffsatisfiesIsDistBounded f, thenfun x => η x • f x.2is integrable for any Schwartz mapη : 𝓢(Time × Space d, ℝ).IsDistBounded.mono: Iff₁satisfiesIsDistBounded f₁and‖f₂ x‖ ≤ ‖f₁ x‖for allx, thenf₂satisfiesIsDistBounded f₂.
iii. Table of contents #
- A. The predicate
IsDistBounded f - B. Integrability properties of functions satisfying
IsDistBounded f- B.1.
AEStronglyMeasurableconditions - B.2. Integrability with respect to Schwartz maps on space
- B.3. Integrability with respect to Schwartz maps on time and space
- B.4. Integrability with respect to inverse powers
- B.1.
- C. Integral on Schwartz maps is bounded by seminorms
- D. Construction rules for
IsDistBounded f- D.1. Addition
- D.2. Finite sums
- D.3. Scalar multiplication
- D.4. Components of functions
- D.5. Compositions with additions and subtractions
- D.6. Congruence with respect to the norm
- D.7. Monotonicity with respect to the norm
- D.8. Inner products
- D.9. Scalar multiplication with constant
- E. Specific functions that are
IsDistBounded- E.1. Constant functions
- E.2. Powers of norms
- F. Multiplication by norms and components
iv. References #
A. The predicate IsDistBounded f #
The boundedness condition on a function EuclideanSpace ℝ (Fin dm1.succ) → F
for it to form a distribution.
Equations
- One or more equations did not get rendered due to their size.
Instances For
B. Integrability properties of functions satisfying IsDistBounded f #
B.1. AEStronglyMeasurable conditions #
theorem
Space.IsDistBounded.aestronglyMeasurable
{F : Type}
[NormedAddCommGroup F]
{d : ℕ}
{f : Space d → F}
(hf : IsDistBounded f)
:
MeasureTheory.AEStronglyMeasurable (fun (x : Space d) => f x) MeasureTheory.volume
theorem
Space.IsDistBounded.aeStronglyMeasurable_schwartzMap_smul
{F : Type}
[NormedAddCommGroup F]
[NormedSpace ℝ F]
{d : ℕ}
{f : Space d → F}
(hf : IsDistBounded f)
(η : SchwartzMap (Space d) ℝ)
:
MeasureTheory.AEStronglyMeasurable (fun (x : Space d) => η x • f x) MeasureTheory.volume
theorem
Space.IsDistBounded.aeStronglyMeasurable_fderiv_schwartzMap_smul
{F : Type}
[NormedAddCommGroup F]
[NormedSpace ℝ F]
{d : ℕ}
{f : Space d → F}
(hf : IsDistBounded f)
(η : SchwartzMap (Space d) ℝ)
(y : Space d)
:
MeasureTheory.AEStronglyMeasurable (fun (x : Space d) => (fderiv ℝ (⇑η) x) y • f x) MeasureTheory.volume
theorem
Space.IsDistBounded.aeStronglyMeasurable_inv_pow
{F : Type}
[NormedAddCommGroup F]
[NormedSpace ℝ F]
{d r : ℕ}
{f : Space d → F}
(hf : IsDistBounded f)
:
theorem
Space.IsDistBounded.aeStronglyMeasurable_time_schwartzMap_smul
{F : Type}
[NormedAddCommGroup F]
[NormedSpace ℝ F]
{d : ℕ}
{f : Space d → F}
(hf : IsDistBounded f)
(η : SchwartzMap (Time × Space d) ℝ)
:
MeasureTheory.AEStronglyMeasurable (fun (x : Time × Space d) => η x • f x.2) MeasureTheory.volume
B.2. Integrability with respect to Schwartz maps on space #
theorem
Space.IsDistBounded.integrable_space
{F : Type}
[NormedAddCommGroup F]
[NormedSpace ℝ F]
{d : ℕ}
{f : Space d → F}
(hf : IsDistBounded f)
(η : SchwartzMap (Space d) ℝ)
:
MeasureTheory.Integrable (fun (x : Space d) => η x • f x) MeasureTheory.volume
theorem
Space.IsDistBounded.integrable_space_mul
{d : ℕ}
{f : Space d → ℝ}
(hf : IsDistBounded f)
(η : SchwartzMap (Space d) ℝ)
:
MeasureTheory.Integrable (fun (x : Space d) => η x * f x) MeasureTheory.volume
theorem
Space.IsDistBounded.integrable_space_fderiv
{F : Type}
[NormedAddCommGroup F]
[NormedSpace ℝ F]
{d : ℕ}
{f : Space d → F}
(hf : IsDistBounded f)
(η : SchwartzMap (Space d) ℝ)
(y : Space d)
:
MeasureTheory.Integrable (fun (x : Space d) => (fderiv ℝ (⇑η) x) y • f x) MeasureTheory.volume
theorem
Space.IsDistBounded.integrable_space_fderiv_mul
{d : ℕ}
{f : Space d → ℝ}
(hf : IsDistBounded f)
(η : SchwartzMap (Space d) ℝ)
(y : Space d)
:
MeasureTheory.Integrable (fun (x : Space d) => (fderiv ℝ (⇑η) x) y * f x) MeasureTheory.volume
B.3. Integrability with respect to Schwartz maps on time and space #
instance
Space.IsDistBounded.instHasTemperateGrowthProdProdOfOpensMeasurableSpace
{D1 : Type}
[NormedAddCommGroup D1]
[MeasurableSpace D1]
{D2 : Type}
[NormedAddCommGroup D2]
[MeasurableSpace D2]
(μ1 : MeasureTheory.Measure D1)
(μ2 : MeasureTheory.Measure D2)
[μ1.HasTemperateGrowth]
[μ2.HasTemperateGrowth]
[OpensMeasurableSpace (D1 × D2)]
:
(μ1.prod μ2).HasTemperateGrowth
theorem
Space.IsDistBounded.integrable_time_space
{F : Type}
[NormedAddCommGroup F]
[NormedSpace ℝ F]
{d : ℕ}
{f : Space d → F}
(hf : IsDistBounded f)
(η : SchwartzMap (Time × Space d) ℝ)
:
MeasureTheory.Integrable (fun (x : Time × Space d) => η x • f x.2) MeasureTheory.volume
B.4. Integrability with respect to inverse powers #
theorem
Space.IsDistBounded.integrable_mul_inv_pow
{F : Type}
[NormedAddCommGroup F]
[NormedSpace ℝ F]
{d : ℕ}
{f : Space d → F}
(hf : IsDistBounded f)
:
C. Integral on Schwartz maps is bounded by seminorms #
theorem
Space.IsDistBounded.integral_mul_schwartzMap_bounded
{F : Type}
[NormedAddCommGroup F]
[NormedSpace ℝ F]
{d : ℕ}
{f : Space d → F}
(hf : IsDistBounded f)
:
D. Construction rules for IsDistBounded f #
D.1. Addition #
theorem
Space.IsDistBounded.add
{F : Type}
[NormedAddCommGroup F]
{d : ℕ}
{f g : Space d → F}
(hf : IsDistBounded f)
(hg : IsDistBounded g)
:
IsDistBounded (f + g)
theorem
Space.IsDistBounded.fun_add
{F : Type}
[NormedAddCommGroup F]
{d : ℕ}
{f g : Space d → F}
(hf : IsDistBounded f)
(hg : IsDistBounded g)
:
IsDistBounded fun (x : Space d) => f x + g x
D.2. Finite sums #
theorem
Space.IsDistBounded.sum
{F : Type}
[NormedAddCommGroup F]
{ι : Type u_1}
{s : Finset ι}
{d : ℕ}
{f : ι → Space d → F}
(hf : ∀ i ∈ s, IsDistBounded (f i))
:
IsDistBounded (∑ i ∈ s, f i)
theorem
Space.IsDistBounded.sum_fun
{F : Type}
[NormedAddCommGroup F]
{ι : Type u_1}
{s : Finset ι}
{d : ℕ}
{f : ι → Space d → F}
(hf : ∀ i ∈ s, IsDistBounded (f i))
:
IsDistBounded fun (x : Space d) => ∑ i ∈ s, f i x
D.3. Scalar multiplication #
theorem
Space.IsDistBounded.const_smul
{F : Type}
[NormedAddCommGroup F]
{d : ℕ}
[NormedSpace ℝ F]
{f : Space d → F}
(hf : IsDistBounded f)
(c : ℝ)
:
IsDistBounded (c • f)
theorem
Space.IsDistBounded.neg
{F : Type}
[NormedAddCommGroup F]
{d : ℕ}
[NormedSpace ℝ F]
{f : Space d → F}
(hf : IsDistBounded f)
:
IsDistBounded fun (x : Space d) => -f x
theorem
Space.IsDistBounded.const_fun_smul
{F : Type}
[NormedAddCommGroup F]
{d : ℕ}
[NormedSpace ℝ F]
{f : Space d → F}
(hf : IsDistBounded f)
(c : ℝ)
:
IsDistBounded fun (x : Space d) => c • f x
theorem
Space.IsDistBounded.const_mul_fun
{d : ℕ}
{f : Space d → ℝ}
(hf : IsDistBounded f)
(c : ℝ)
:
IsDistBounded fun (x : Space d) => c * f x
theorem
Space.IsDistBounded.mul_const_fun
{d : ℕ}
{f : Space d → ℝ}
(hf : IsDistBounded f)
(c : ℝ)
:
IsDistBounded fun (x : Space d) => f x * c
D.4. Components of functions #
theorem
Space.IsDistBounded.pi_comp
{d n : ℕ}
{f : Space d → EuclideanSpace ℝ (Fin n)}
(hf : IsDistBounded f)
(j : Fin n)
:
IsDistBounded fun (x : Space d) => (f x).ofLp j
theorem
Space.IsDistBounded.vector_component
{d n : ℕ}
{f : Space d → Lorentz.Vector n}
(hf : IsDistBounded f)
(j : Fin 1 ⊕ Fin n)
:
IsDistBounded fun (x : Space d) => f x j
D.5. Compositions with additions and subtractions #
theorem
Space.IsDistBounded.comp_add_right
{F : Type}
[NormedAddCommGroup F]
{d : ℕ}
{f : Space d → F}
(hf : IsDistBounded f)
(c : Space d)
:
IsDistBounded fun (x : Space d) => f (x + c)
theorem
Space.IsDistBounded.comp_sub_right
{F : Type}
[NormedAddCommGroup F]
{d : ℕ}
{f : Space d → F}
(hf : IsDistBounded f)
(c : Space d)
:
IsDistBounded fun (x : Space d) => f (x - c)
D.6. Congruence with respect to the norm #
theorem
Space.IsDistBounded.congr
{F F' : Type}
[NormedAddCommGroup F]
[NormedAddCommGroup F']
{d : ℕ}
{f : Space d → F}
{g : Space d → F'}
(hf : IsDistBounded f)
(hae : MeasureTheory.AEStronglyMeasurable g MeasureTheory.volume)
(hfg : ∀ (x : Space d), ‖g x‖ = ‖f x‖)
:
D.7. Monotonicity with respect to the norm #
theorem
Space.IsDistBounded.mono
{F F' : Type}
[NormedAddCommGroup F]
[NormedAddCommGroup F']
{d : ℕ}
{f : Space d → F}
{g : Space d → F'}
(hf : IsDistBounded f)
(hae : MeasureTheory.AEStronglyMeasurable g MeasureTheory.volume)
(hfg : ∀ (x : Space d), ‖g x‖ ≤ ‖f x‖)
:
D.8. Inner products #
theorem
Space.IsDistBounded.inner_left
{d n : ℕ}
{f : Space d → EuclideanSpace ℝ (Fin n)}
(hf : IsDistBounded f)
(y : EuclideanSpace ℝ (Fin n))
:
IsDistBounded fun (x : Space d) => inner ℝ (f x) y
D.9. Scalar multiplication with constant #
theorem
Space.IsDistBounded.smul_const
{F : Type}
[NormedAddCommGroup F]
{d : ℕ}
[NormedSpace ℝ F]
{c : Space d → ℝ}
(hc : IsDistBounded c)
(f : F)
:
IsDistBounded fun (x : Space d) => c x • f
E. Specific functions that are IsDistBounded #
E.1. Constant functions #
theorem
Space.IsDistBounded.const
{F : Type}
[NormedAddCommGroup F]
{d : ℕ}
(f : F)
:
IsDistBounded fun (x : Space d) => f
E.2. Powers of norms #
theorem
Space.IsDistBounded.norm_sub
{d : ℕ}
(g : Space d)
:
IsDistBounded fun (x : Space d) => ‖x - g‖
theorem
Space.IsDistBounded.norm_add
{d : ℕ}
(g : Space d)
:
IsDistBounded fun (x : Space d) => ‖x + g‖
F. Multiplication by norms and components #
theorem
Space.IsDistBounded.norm_smul_isDistBounded
{F : Type}
[NormedAddCommGroup F]
{d : ℕ}
[NormedSpace ℝ F]
{f : Space d → F}
(hf : IsDistBounded f)
:
IsDistBounded fun (x : Space d) => ‖x‖ • f x
theorem
Space.IsDistBounded.norm_mul_isDistBounded
{d : ℕ}
{f : Space d → ℝ}
(hf : IsDistBounded f)
:
IsDistBounded fun (x : Space d) => ‖x‖ * f x
theorem
Space.IsDistBounded.component_smul_isDistBounded
{F : Type}
[NormedAddCommGroup F]
{d : ℕ}
[NormedSpace ℝ F]
{f : Space d → F}
(hf : IsDistBounded f)
(i : Fin d)
:
IsDistBounded fun (x : Space d) => x.val i • f x
theorem
Space.IsDistBounded.component_mul_isDistBounded
{d : ℕ}
{f : Space d → ℝ}
(hf : IsDistBounded f)
(i : Fin d)
:
IsDistBounded fun (x : Space d) => x.val i * f x
theorem
Space.IsDistBounded.isDistBounded_smul_self
{d : ℕ}
{f : Space d → ℝ}
(hf : IsDistBounded f)
:
IsDistBounded fun (x : Space d) => f x • x
theorem
Space.IsDistBounded.isDistBounded_smul_self_repr
{d : ℕ}
{f : Space d → ℝ}
(hf : IsDistBounded f)
:
IsDistBounded fun (x : Space d) => f x • basis.repr x
theorem
Space.IsDistBounded.isDistBounded_smul_inner
{F : Type}
[NormedAddCommGroup F]
{d : ℕ}
[NormedSpace ℝ F]
{f : Space d → F}
(hf : IsDistBounded f)
(y : Space d)
:
IsDistBounded fun (x : Space d) => inner ℝ y x • f x
theorem
Space.IsDistBounded.isDistBounded_smul_inner_of_smul_norm
{F : Type}
[NormedAddCommGroup F]
{d : ℕ}
[NormedSpace ℝ F]
{f : Space d → F}
(hf : IsDistBounded fun (x : Space d) => ‖x‖ • f x)
(hae : MeasureTheory.AEStronglyMeasurable f MeasureTheory.volume)
(y : Space d)
:
IsDistBounded fun (x : Space d) => inner ℝ y x • f x
theorem
Space.IsDistBounded.isDistBounded_mul_inner
{d : ℕ}
{f : Space d → ℝ}
(hf : IsDistBounded f)
(y : Space d)
:
IsDistBounded fun (x : Space d) => inner ℝ y x * f x
theorem
Space.IsDistBounded.isDistBounded_mul_inner'
{d : ℕ}
{f : Space d → ℝ}
(hf : IsDistBounded f)
(y : Space d)
:
IsDistBounded fun (x : Space d) => inner ℝ x y * f x
theorem
Space.IsDistBounded.isDistBounded_mul_inner_of_smul_norm
{d : ℕ}
{f : Space d → ℝ}
(hf : IsDistBounded fun (x : Space d) => ‖x‖ * f x)
(hae : MeasureTheory.AEStronglyMeasurable f MeasureTheory.volume)
(y : Space d)
:
IsDistBounded fun (x : Space d) => inner ℝ y x * f x