PhysLean Documentation

PhysLean.SpaceAndTime.Space.IsDistBounded

Functions on Space d which can be made into distributions #

i. Overview #

In this module, for functions f : Space d → F, we define the property IsDistBounded f. Functions satisfying this property can be used to create distributions Space d →d[ℝ] F by integrating them against Schwartz maps.

The condition IsDistBounded f essentially says that f is bounded by a finite sum of terms of the form c * ‖x + g‖ ^ p for constants c, g and - (d - 1) ≤ p where d is the dimension of the space.

ii. Key results #

iii. Table of contents #

iv. References #

A. The predicate IsDistBounded f #

def Space.IsDistBounded {F : Type} [NormedAddCommGroup F] {d : } (f : Space dF) :

The boundedness condition on a function EuclideanSpace ℝ (Fin dm1.succ) → F for it to form a distribution.

Equations
  • One or more equations did not get rendered due to their size.
Instances For

    B. Integrability properties of functions satisfying IsDistBounded f #

    B.1. AEStronglyMeasurable conditions #

    B.2. Integrability with respect to Schwartz maps on space #

    B.3. Integrability with respect to Schwartz maps on time and space #

    B.4. Integrability with respect to inverse powers #

    C. Integral on Schwartz maps is bounded by seminorms #

    theorem Space.IsDistBounded.integral_mul_schwartzMap_bounded {F : Type} [NormedAddCommGroup F] [NormedSpace F] {d : } {f : Space dF} (hf : IsDistBounded f) :
    ∃ (s : Finset ( × )) (C : ), 0 C ∀ (η : SchwartzMap (Space d) ), (x : Space d), η x f x C * (s.sup (schwartzSeminormFamily (Space d) )) η

    D. Construction rules for IsDistBounded f #

    D.1. Addition #

    theorem Space.IsDistBounded.add {F : Type} [NormedAddCommGroup F] {d : } {f g : Space dF} (hf : IsDistBounded f) (hg : IsDistBounded g) :
    theorem Space.IsDistBounded.fun_add {F : Type} [NormedAddCommGroup F] {d : } {f g : Space dF} (hf : IsDistBounded f) (hg : IsDistBounded g) :
    IsDistBounded fun (x : Space d) => f x + g x

    D.2. Finite sums #

    theorem Space.IsDistBounded.sum {F : Type} [NormedAddCommGroup F] {ι : Type u_1} {s : Finset ι} {d : } {f : ιSpace dF} (hf : is, IsDistBounded (f i)) :
    IsDistBounded (∑ is, f i)
    theorem Space.IsDistBounded.sum_fun {F : Type} [NormedAddCommGroup F] {ι : Type u_1} {s : Finset ι} {d : } {f : ιSpace dF} (hf : is, IsDistBounded (f i)) :
    IsDistBounded fun (x : Space d) => is, f i x

    D.3. Scalar multiplication #

    theorem Space.IsDistBounded.neg {F : Type} [NormedAddCommGroup F] {d : } [NormedSpace F] {f : Space dF} (hf : IsDistBounded f) :
    IsDistBounded fun (x : Space d) => -f x
    theorem Space.IsDistBounded.const_fun_smul {F : Type} [NormedAddCommGroup F] {d : } [NormedSpace F] {f : Space dF} (hf : IsDistBounded f) (c : ) :
    IsDistBounded fun (x : Space d) => c f x
    theorem Space.IsDistBounded.const_mul_fun {d : } {f : Space d} (hf : IsDistBounded f) (c : ) :
    IsDistBounded fun (x : Space d) => c * f x
    theorem Space.IsDistBounded.mul_const_fun {d : } {f : Space d} (hf : IsDistBounded f) (c : ) :
    IsDistBounded fun (x : Space d) => f x * c

    D.4. Components of functions #

    theorem Space.IsDistBounded.pi_comp {d n : } {f : Space dEuclideanSpace (Fin n)} (hf : IsDistBounded f) (j : Fin n) :
    IsDistBounded fun (x : Space d) => (f x).ofLp j
    theorem Space.IsDistBounded.vector_component {d n : } {f : Space dLorentz.Vector n} (hf : IsDistBounded f) (j : Fin 1 Fin n) :
    IsDistBounded fun (x : Space d) => f x j

    D.5. Compositions with additions and subtractions #

    theorem Space.IsDistBounded.comp_add_right {F : Type} [NormedAddCommGroup F] {d : } {f : Space dF} (hf : IsDistBounded f) (c : Space d) :
    IsDistBounded fun (x : Space d) => f (x + c)
    theorem Space.IsDistBounded.comp_sub_right {F : Type} [NormedAddCommGroup F] {d : } {f : Space dF} (hf : IsDistBounded f) (c : Space d) :
    IsDistBounded fun (x : Space d) => f (x - c)

    D.6. Congruence with respect to the norm #

    theorem Space.IsDistBounded.congr {F F' : Type} [NormedAddCommGroup F] [NormedAddCommGroup F'] {d : } {f : Space dF} {g : Space dF'} (hf : IsDistBounded f) (hae : MeasureTheory.AEStronglyMeasurable g MeasureTheory.volume) (hfg : ∀ (x : Space d), g x = f x) :

    D.7. Monotonicity with respect to the norm #

    theorem Space.IsDistBounded.mono {F F' : Type} [NormedAddCommGroup F] [NormedAddCommGroup F'] {d : } {f : Space dF} {g : Space dF'} (hf : IsDistBounded f) (hae : MeasureTheory.AEStronglyMeasurable g MeasureTheory.volume) (hfg : ∀ (x : Space d), g x f x) :

    D.8. Inner products #

    theorem Space.IsDistBounded.inner_left {d n : } {f : Space dEuclideanSpace (Fin n)} (hf : IsDistBounded f) (y : EuclideanSpace (Fin n)) :
    IsDistBounded fun (x : Space d) => inner (f x) y

    D.9. Scalar multiplication with constant #

    theorem Space.IsDistBounded.smul_const {F : Type} [NormedAddCommGroup F] {d : } [NormedSpace F] {c : Space d} (hc : IsDistBounded c) (f : F) :
    IsDistBounded fun (x : Space d) => c x f

    E. Specific functions that are IsDistBounded #

    E.1. Constant functions #

    theorem Space.IsDistBounded.const {F : Type} [NormedAddCommGroup F] {d : } (f : F) :
    IsDistBounded fun (x : Space d) => f

    E.2. Powers of norms #

    theorem Space.IsDistBounded.pow {d : } (n : ) (hn : -↑(d - 1) n) :
    IsDistBounded fun (x : Space d) => x ^ n
    theorem Space.IsDistBounded.pow_shift {d : } (n : ) (g : Space d) (hn : -↑(d - 1) n) :
    IsDistBounded fun (x : Space d) => x - g ^ n
    theorem Space.IsDistBounded.nat_pow {d : } (n : ) :
    IsDistBounded fun (x : Space d) => x ^ n
    theorem Space.IsDistBounded.norm_add_nat_pow {d : } (n : ) (a : ) :
    IsDistBounded fun (x : Space d) => (x + a) ^ n
    theorem Space.IsDistBounded.norm_add_pos_nat_zpow {d : } (n : ) (a : ) (ha : 0 < a) :
    IsDistBounded fun (x : Space d) => (x + a) ^ n
    theorem Space.IsDistBounded.nat_pow_shift {d : } (n : ) (g : Space d) :
    IsDistBounded fun (x : Space d) => x - g ^ n
    theorem Space.IsDistBounded.norm_sub {d : } (g : Space d) :
    IsDistBounded fun (x : Space d) => x - g
    theorem Space.IsDistBounded.norm_add {d : } (g : Space d) :
    IsDistBounded fun (x : Space d) => x + g
    theorem Space.IsDistBounded.zpow_smul_self {d : } (n : ) (hn : -↑(d - 1) - 1 n) :
    IsDistBounded fun (x : Space d) => x ^ n x
    theorem Space.IsDistBounded.zpow_smul_repr_self {d : } (n : ) (hn : -↑(d - 1) - 1 n) :
    IsDistBounded fun (x : Space d) => x ^ n basis.repr x
    theorem Space.IsDistBounded.zpow_smul_repr_self_sub {d : } (n : ) (hn : -↑(d - 1) - 1 n) (y : Space d) :
    IsDistBounded fun (x : Space d) => x - y ^ n basis.repr (x - y)
    theorem Space.IsDistBounded.inv_pow_smul_self {d : } (n : ) (hn : -↑(d - 1) - 1 -n) :
    IsDistBounded fun (x : Space d) => x⁻¹ ^ n x
    theorem Space.IsDistBounded.inv_pow_smul_repr_self {d : } (n : ) (hn : -↑(d - 1) - 1 -n) :

    F. Multiplication by norms and components #

    theorem Space.IsDistBounded.norm_smul_nat_pow {d : } (p : ) (c : Space d) :
    IsDistBounded fun (x : Space d) => x * x + c ^ p
    theorem Space.IsDistBounded.norm_smul_zpow {d : } (p : ) (c : Space d) (hn : -↑(d - 1) p) :
    IsDistBounded fun (x : Space d) => x * x + c ^ p
    theorem Space.IsDistBounded.component_smul_isDistBounded {F : Type} [NormedAddCommGroup F] {d : } [NormedSpace F] {f : Space dF} (hf : IsDistBounded f) (i : Fin d) :
    IsDistBounded fun (x : Space d) => x.val i f x
    theorem Space.IsDistBounded.component_mul_isDistBounded {d : } {f : Space d} (hf : IsDistBounded f) (i : Fin d) :
    IsDistBounded fun (x : Space d) => x.val i * f x
    theorem Space.IsDistBounded.isDistBounded_smul_self {d : } {f : Space d} (hf : IsDistBounded f) :
    IsDistBounded fun (x : Space d) => f x x
    theorem Space.IsDistBounded.isDistBounded_smul_inner {F : Type} [NormedAddCommGroup F] {d : } [NormedSpace F] {f : Space dF} (hf : IsDistBounded f) (y : Space d) :
    IsDistBounded fun (x : Space d) => inner y x f x
    theorem Space.IsDistBounded.isDistBounded_mul_inner {d : } {f : Space d} (hf : IsDistBounded f) (y : Space d) :
    IsDistBounded fun (x : Space d) => inner y x * f x
    theorem Space.IsDistBounded.isDistBounded_mul_inner' {d : } {f : Space d} (hf : IsDistBounded f) (y : Space d) :
    IsDistBounded fun (x : Space d) => inner x y * f x