Distributions from functions on space #
i. Overview #
In this module we define distributions on space constructed from functions
f : Space d → F satisfying the condition IsDistBounded f.
This gives a convenient way to construct distributions from functions, without needing to reference the underlying Schwartz maps.
ii. Key results #
distOfFunction f hf: The distribution on space constructed from the functionf : Space d → Fsatisfying theIsDistBounded fcondition.
iii. Table of contents #
- A. Definition of a distribution from a function
- B. Linarity properties of getting distributions from functions
- C. Properties related to inner products
- D. Components
iv. References #
A. Definition of a distribution from a function #
def
Space.distOfFunction
{F : Type}
[NormedAddCommGroup F]
[NormedSpace ℝ F]
{d : ℕ}
(f : Space d → F)
(hf : IsDistBounded f)
:
A distribution Space d →d[ℝ] F from a function
f : Space d → F which satisfies the IsDistBounded f condition.
Equations
- Space.distOfFunction f hf = SchwartzMap.mkCLMtoNormedSpace (fun (η : SchwartzMap (Space d) ℝ) => ∫ (x : Space d), η x • f x) ⋯ ⋯ ⋯
Instances For
theorem
Space.distOfFunction_apply
{F : Type}
[NormedAddCommGroup F]
[NormedSpace ℝ F]
{d : ℕ}
(f : Space d → F)
(hf : IsDistBounded f)
(η : SchwartzMap (Space d) ℝ)
:
B. Linarity properties of getting distributions from functions #
@[simp]
theorem
Space.distOfFunction_zero_eq_zero
{F : Type}
[NormedAddCommGroup F]
[NormedSpace ℝ F]
{d : ℕ}
:
theorem
Space.distOfFunction_smul
{F : Type}
[NormedAddCommGroup F]
[NormedSpace ℝ F]
{d : ℕ}
(f : Space d → F)
(hf : IsDistBounded f)
(c : ℝ)
:
theorem
Space.distOfFunction_smul_fun
{F : Type}
[NormedAddCommGroup F]
[NormedSpace ℝ F]
{d : ℕ}
(f : Space d → F)
(hf : IsDistBounded f)
(c : ℝ)
:
theorem
Space.distOfFunction_neg
{F : Type}
[NormedAddCommGroup F]
[NormedSpace ℝ F]
{d : ℕ}
(f : Space d → F)
(hf : IsDistBounded fun (x : Space d) => -f x)
:
C. Properties related to inner products #
theorem
Space.distOfFunction_inner
{d n : ℕ}
(f : Space d → EuclideanSpace ℝ (Fin n))
(hf : IsDistBounded f)
(η : SchwartzMap (Space d) ℝ)
(y : EuclideanSpace ℝ (Fin n))
:
D. Components #
theorem
Space.distOfFunction_eculid_eval
{d n : ℕ}
(f : Space d → EuclideanSpace ℝ (Fin n))
(hf : IsDistBounded f)
(η : SchwartzMap (Space d) ℝ)
(i : Fin n)
:
theorem
Space.distOfFunction_vector_eval
{d n : ℕ}
(f : Space d → Lorentz.Vector n)
(hf : IsDistBounded f)
(η : SchwartzMap (Space d) ℝ)
(i : Fin 1 ⊕ Fin n)
: