PhysLean Documentation

PhysLean.SpaceAndTime.Space.DistOfFunction

Distributions from functions on space #

i. Overview #

In this module we define distributions on space constructed from functions f : Space d → F satisfying the condition IsDistBounded f.

This gives a convenient way to construct distributions from functions, without needing to reference the underlying Schwartz maps.

ii. Key results #

iii. Table of contents #

iv. References #

A. Definition of a distribution from a function #

def Space.distOfFunction {F : Type} [NormedAddCommGroup F] [NormedSpace F] {d : } (f : Space dF) (hf : IsDistBounded f) :

A distribution Space d →d[ℝ] F from a function f : Space d → F which satisfies the IsDistBounded f condition.

Equations
Instances For
    theorem Space.distOfFunction_apply {F : Type} [NormedAddCommGroup F] [NormedSpace F] {d : } (f : Space dF) (hf : IsDistBounded f) (η : SchwartzMap (Space d) ) :
    (distOfFunction f hf) η = (x : Space d), η x f x

    B. Linarity properties of getting distributions from functions #

    @[simp]
    theorem Space.distOfFunction_zero_eq_zero {F : Type} [NormedAddCommGroup F] [NormedSpace F] {d : } :
    distOfFunction (fun (x : Space d) => 0) = 0
    theorem Space.distOfFunction_smul {F : Type} [NormedAddCommGroup F] [NormedSpace F] {d : } (f : Space dF) (hf : IsDistBounded f) (c : ) :
    theorem Space.distOfFunction_smul_fun {F : Type} [NormedAddCommGroup F] [NormedSpace F] {d : } (f : Space dF) (hf : IsDistBounded f) (c : ) :
    distOfFunction (fun (x : Space d) => c f x) = c distOfFunction f hf
    theorem Space.distOfFunction_mul_fun {d : } (f : Space d) (hf : IsDistBounded f) (c : ) :
    distOfFunction (fun (x : Space d) => c * f x) = c distOfFunction f hf
    theorem Space.distOfFunction_neg {F : Type} [NormedAddCommGroup F] [NormedSpace F] {d : } (f : Space dF) (hf : IsDistBounded fun (x : Space d) => -f x) :
    distOfFunction (fun (x : Space d) => -f x) hf = -distOfFunction f
    theorem Space.distOfFunction_inner {d n : } (f : Space dEuclideanSpace (Fin n)) (hf : IsDistBounded f) (η : SchwartzMap (Space d) ) (y : EuclideanSpace (Fin n)) :
    inner ((distOfFunction f hf) η) y = (x : Space d), η x * inner (f x) y

    D. Components #

    theorem Space.distOfFunction_eculid_eval {d n : } (f : Space dEuclideanSpace (Fin n)) (hf : IsDistBounded f) (η : SchwartzMap (Space d) ) (i : Fin n) :
    ((distOfFunction f hf) η).ofLp i = (distOfFunction (fun (x : Space d) => (f x).ofLp i) ) η
    theorem Space.distOfFunction_vector_eval {d n : } (f : Space dLorentz.Vector n) (hf : IsDistBounded f) (η : SchwartzMap (Space d) ) (i : Fin 1 Fin n) :
    (distOfFunction f hf) η i = (distOfFunction (fun (x : Space d) => f x i) ) η