PhysLean Documentation

PhysLean.Particles.SuperSymmetry.SU5.ChargeSpectrum.Map

Mapping charge spectra values #

i. Overview #

In this module we define a function map which takes an additive monoid homomorphism f : 𝓩 →+ 𝓩1 and a charge spectra x : ChargeSpectrum 𝓩, and returns the charge x.map f : ChargeSpectrum 𝓩1 obtained by mapping the elements of x by f.

There are various properties which are preserved under this mapping:

There are some properties which are reflected under this mapping:

We define the preimage of this mapping within a subset ofFinset S5 S10 of Charges 𝓩 in a computationaly efficient way.

ii. Key results #

iii. Table of contents #

iv. References #

There are no known references for the material in this module.

A. The mapping of charge spectra #

def SuperSymmetry.SU5.ChargeSpectrum.map {𝓩 𝓩1 : Type} [AddCommGroup 𝓩] [AddCommGroup 𝓩1] [DecidableEq 𝓩1] (f : 𝓩 →+ 𝓩1) (x : ChargeSpectrum 𝓩) :

Given an additive monoid homomorphisms f : 𝓩 →+ 𝓩1, for a charge x : Charges 𝓩, x.map f is the charge of Charges 𝓩1 obtained by mapping the elements of x by f.

Equations
Instances For
    @[simp]
    theorem SuperSymmetry.SU5.ChargeSpectrum.map_empty {𝓩 𝓩1 : Type} [AddCommGroup 𝓩] [AddCommGroup 𝓩1] [DecidableEq 𝓩1] (f : 𝓩 →+ 𝓩1) :

    A.2. Mapping of charge spectra obeys composing maps #

    theorem SuperSymmetry.SU5.ChargeSpectrum.map_map {𝓩 𝓩1 𝓩2 : Type} [AddCommGroup 𝓩] [AddCommGroup 𝓩1] [DecidableEq 𝓩1] [AddCommGroup 𝓩2] [DecidableEq 𝓩2] (f : 𝓩 →+ 𝓩1) (g : 𝓩1 →+ 𝓩2) (x : ChargeSpectrum 𝓩) :
    map g (map f x) = map (g.comp f) x

    A.3. Mapping of charge spectra obeys the identity #

    A.4. The charges of a field label commute with mapping of charge spectra #

    theorem SuperSymmetry.SU5.ChargeSpectrum.map_ofFieldLabel {𝓩 𝓩1 : Type} [AddCommGroup 𝓩] [AddCommGroup 𝓩1] [DecidableEq 𝓩1] (f : 𝓩 →+ 𝓩1) (x : ChargeSpectrum 𝓩) (F : FieldLabel) :

    A.5. Mappings of charge spectra preserve the subset relation #

    theorem SuperSymmetry.SU5.ChargeSpectrum.map_subset {𝓩 𝓩1 : Type} [AddCommGroup 𝓩] [AddCommGroup 𝓩1] [DecidableEq 𝓩1] {f : 𝓩 →+ 𝓩1} {x y : ChargeSpectrum 𝓩} (h : x y) :
    map f x map f y

    A.6. Mappings of charge spectra and charges of potential terms #

    theorem SuperSymmetry.SU5.ChargeSpectrum.mem_map_ofPotentialTerm_iff {𝓩 𝓩1 : Type} [AddCommGroup 𝓩] [AddCommGroup 𝓩1] [DecidableEq 𝓩1] {i : 𝓩1} [DecidableEq 𝓩] (f : 𝓩 →+ 𝓩1) (x : ChargeSpectrum 𝓩) (T : PotentialTerm) :
    theorem SuperSymmetry.SU5.ChargeSpectrum.mem_map_ofPotentialTerm'_iff {𝓩 𝓩1 : Type} [AddCommGroup 𝓩] [AddCommGroup 𝓩1] [DecidableEq 𝓩1] {i : 𝓩1} [DecidableEq 𝓩] (f : 𝓩 →+ 𝓩1) (x : ChargeSpectrum 𝓩) (T : PotentialTerm) :

    A.7. Mapping charge spectra of `allowsTermForm #

    theorem SuperSymmetry.SU5.ChargeSpectrum.allowsTermForm_map {𝓩 𝓩1 : Type} [AddCommGroup 𝓩] [AddCommGroup 𝓩1] [DecidableEq 𝓩1] [DecidableEq 𝓩] {T : PotentialTerm} {f : 𝓩 →+ 𝓩1} {a b c : 𝓩} :
    map f (allowsTermForm a b c T) = allowsTermForm (f a) (f b) (f c) T

    A.8. Mapping preserves whether a charge spectrum allows a potential term #

    theorem SuperSymmetry.SU5.ChargeSpectrum.map_allowsTerm {𝓩 𝓩1 : Type} [AddCommGroup 𝓩] [AddCommGroup 𝓩1] [DecidableEq 𝓩1] [DecidableEq 𝓩] {f : 𝓩 →+ 𝓩1} {x : ChargeSpectrum 𝓩} {T : PotentialTerm} (h : x.AllowsTerm T) :
    (map f x).AllowsTerm T

    A.9. Mapping preserves if a charge spectrum is pheno-constrained #

    A.10. Mapping preserves completeness of charge spectra #

    A.11. Mapping commutes with charges of Yukawa terms #

    theorem SuperSymmetry.SU5.ChargeSpectrum.mem_map_ofYukawaTerms_iff {𝓩 𝓩1 : Type} [AddCommGroup 𝓩] [AddCommGroup 𝓩1] [DecidableEq 𝓩1] [DecidableEq 𝓩] {f : 𝓩 →+ 𝓩1} {x : ChargeSpectrum 𝓩} {i : 𝓩1} :

    A.12. Mapping of chareg spectra and regenerating dangerous Yukawa terms #

    theorem SuperSymmetry.SU5.ChargeSpectrum.mem_map_ofYukawaTermsNSum_iff {𝓩 𝓩1 : Type} [AddCommGroup 𝓩] [AddCommGroup 𝓩1] [DecidableEq 𝓩1] [DecidableEq 𝓩] {f : 𝓩 →+ 𝓩1} {x : ChargeSpectrum 𝓩} {n : } {i : 𝓩1} :

    B. Preimage of a charge spectrum under a mapping #

    We give a computationally efficient way of calculating the preimage of a charge s : Charges 𝓩1 in a subset ofFinset S5 S10, and then show it is equal to the actual preimage.

    def SuperSymmetry.SU5.ChargeSpectrum.preimageOfFinset {𝓩 𝓩1 : Type} [AddCommGroup 𝓩] [AddCommGroup 𝓩1] [DecidableEq 𝓩1] [DecidableEq 𝓩] (S5 S10 : Finset 𝓩) (f : 𝓩 →+ 𝓩1) (x : ChargeSpectrum 𝓩1) :

    The preimage of a charge Charges 𝓩1 in ofFinset S5 S10 ⊆ Charges 𝓩 under mapping charges through f : 𝓩 →+ 𝓩1.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For

      B.1. preimageOfFinset gives the actual preimage #

      theorem SuperSymmetry.SU5.ChargeSpectrum.preimageOfFinset_eq {𝓩 𝓩1 : Type} [AddCommGroup 𝓩] [AddCommGroup 𝓩1] [DecidableEq 𝓩1] [DecidableEq 𝓩] (S5 S10 : Finset 𝓩) (f : 𝓩 →+ 𝓩1) (x : ChargeSpectrum 𝓩1) :
      (preimageOfFinset S5 S10 f x) = {y : ChargeSpectrum 𝓩 | map f y = x y ofFinset S5 S10}

      B.2. Efficient definition for the cardinality of the preimage #

      def SuperSymmetry.SU5.ChargeSpectrum.preimageOfFinsetCard {𝓩 𝓩1 : Type} [AddCommGroup 𝓩] [AddCommGroup 𝓩1] [DecidableEq 𝓩1] [DecidableEq 𝓩] (S5 S10 : Finset 𝓩) (f : 𝓩 →+ 𝓩1) (x : ChargeSpectrum 𝓩1) :

      The cardiniality of the preimage of a charge Charges 𝓩1 in ofFinset S5 S10 ⊆ Charges 𝓩 under mapping charges through f : 𝓩 →+ 𝓩1.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For

        B.3. Definition for the cardinality equals cardinality of the preimage #

        theorem SuperSymmetry.SU5.ChargeSpectrum.preimageOfFinset_card_eq {𝓩 𝓩1 : Type} [AddCommGroup 𝓩] [AddCommGroup 𝓩1] [DecidableEq 𝓩1] [DecidableEq 𝓩] (S5 S10 : Finset 𝓩) (f : 𝓩 →+ 𝓩1) (x : ChargeSpectrum 𝓩1) :