PhysLean Documentation

PhysLean.Particles.SuperSymmetry.SU5.ChargeSpectrum.Basic

Charge Spectrum #

i. Overview #

In this module we define the charge spectrum of a SU(5) SUSY GUT theory with additional charges (usually U(1)) valued in ๐“ฉ satisfying the condition of:

The charge spectrum contains the information of the unique charges of each type of particle present in theory. Importantly, the charge spectrum does not contain information about the multiplicity of those charges.

With just the charge spectrum of the theory it is possible to put a number of constraints on the theory, most notably phenomenological constraints.

By keeping the presence of Hd and Hu optional, we can define a number of useful properties of the charge spectrum, which can help in searching for viable theories.

ii. Key results #

iii. Table of contents #

iv. References #

There are no known references for charge spectra in the literature. They were created specifically for the purpose of PhysLean.

A. The definition of the charge spectrum #

structure SuperSymmetry.SU5.ChargeSpectrum (๐“ฉ : Type := โ„ค) :

The type such that an element corresponds to the collection of charges associated with the matter content of the theory. The order of charges is implicitly taken to be qHd, qHu, Q5, Q10.

The Q5 and Q10 charges are represented by Finset rather than Multiset, so multiplicity is not included.

This is defined for a general type ๐“ฉ, which could be e.g.

  • โ„ค in the case of U(1),
  • โ„ค ร— โ„ค in the case of U(1) ร— U(1),
  • Fin 2 in the case of โ„คโ‚‚ etc.
  • qHd : Option ๐“ฉ

    The charge of the Hd particle.

  • qHu : Option ๐“ฉ

    The negative of the charge of the Hu particle. That is to say, the charge of the Hu when considered in the 5-bar representation.

  • Q5 : Finset ๐“ฉ

    The finite set of charges of the matter fields in the Q5 representation.

  • Q10 : Finset ๐“ฉ

    The finite set of charges of the matter fields in the Q10 representation.

Instances For

    A.1. Extensionality properties #

    We prove extensionality properties for ChargeSpectrum ๐“ฉ, that is conditions of when two elements of ChargeSpectrum ๐“ฉ are equal. We also show that when ๐“ฉ has decidable equality, so does ChargeSpectrum ๐“ฉ.

    theorem SuperSymmetry.SU5.ChargeSpectrum.eq_of_parts {๐“ฉ : Type} {x y : ChargeSpectrum ๐“ฉ} (h1 : x.qHd = y.qHd) (h2 : x.qHu = y.qHu) (h3 : x.Q5 = y.Q5) (h4 : x.Q10 = y.Q10) :
    x = y
    theorem SuperSymmetry.SU5.ChargeSpectrum.eq_iff {๐“ฉ : Type} {x y : ChargeSpectrum ๐“ฉ} :
    Equations

    A.2. Relation to products #

    We show that ChargeSpectrum ๐“ฉ is equivalent to the product Option ๐“ฉ ร— Option ๐“ฉ ร— Finset ๐“ฉ ร— Fin ๐“ฉ.

    In an old implementation this was definitionally true, it is not so now.

    def SuperSymmetry.SU5.ChargeSpectrum.toProd {๐“ฉ : Type} :
    ChargeSpectrum ๐“ฉ โ‰ƒ Option ๐“ฉ ร— Option ๐“ฉ ร— Finset ๐“ฉ ร— Finset ๐“ฉ

    The explicit casting of a term of type Charges ๐“ฉ to a term of Option ๐“ฉ ร— Option ๐“ฉ ร— Finset ๐“ฉ ร— Finset ๐“ฉ.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For

      A.3. Rendering #

      unsafe instance SuperSymmetry.SU5.ChargeSpectrum.instRepr {๐“ฉ : Type} [Repr ๐“ฉ] :
      Repr (ChargeSpectrum ๐“ฉ)
      Equations
      • One or more equations did not get rendered due to their size.

      B. The subset relation #

      We define a HasSubset and HasSSubset instance on ChargeSpectrum ๐“ฉ.

      Equations
      • One or more equations did not get rendered due to their size.
      @[simp]
      theorem SuperSymmetry.SU5.ChargeSpectrum.subset_refl {๐“ฉ : Type} (x : ChargeSpectrum ๐“ฉ) :
      theorem Option.toFinset_inj {๐“ฉ : Type} {x y : Option ๐“ฉ} :
      theorem SuperSymmetry.SU5.ChargeSpectrum.subset_trans {๐“ฉ : Type} {x y z : ChargeSpectrum ๐“ฉ} (hxy : x โІ y) (hyz : y โІ z) :
      theorem SuperSymmetry.SU5.ChargeSpectrum.subset_antisymm {๐“ฉ : Type} {x y : ChargeSpectrum ๐“ฉ} (hxy : x โІ y) (hyx : y โІ x) :
      x = y

      C. The empty charge spectrum #

      Equations

      D. The cardinality of a charge spectrum #

      The cardinality of a Charges is defined to be the sum of the cardinalities of each of the underlying finite sets of charges, with Option โ„ค turned to finsets.

      Equations
      Instances For
        theorem SuperSymmetry.SU5.ChargeSpectrum.card_mono {๐“ฉ : Type} {x y : ChargeSpectrum ๐“ฉ} (h : x โІ y) :
        theorem SuperSymmetry.SU5.ChargeSpectrum.eq_of_subset_card {๐“ฉ : Type} {x y : ChargeSpectrum ๐“ฉ} (h : x โІ y) (hcard : x.card = y.card) :
        x = y

        E. The power set of a charge spectrum #

        def Option.powerset {๐“ฉ : Type} [DecidableEq ๐“ฉ] (x : Option ๐“ฉ) :
        Finset (Option ๐“ฉ)

        The powerset of x : Option ๐“ฉ defined as {none} if x is none and {none, some y} is x is some y.

        Equations
        Instances For
          @[simp]
          theorem Option.mem_powerset_iff {๐“ฉ : Type} [DecidableEq ๐“ฉ] {x : Option ๐“ฉ} (y : Option ๐“ฉ) :
          def SuperSymmetry.SU5.ChargeSpectrum.powerset {๐“ฉ : Type} [DecidableEq ๐“ฉ] (x : ChargeSpectrum ๐“ฉ) :
          Finset (ChargeSpectrum ๐“ฉ)

          The powerset of a charge . Given a charge x : Charges it's powerset is the finite set of all Charges which are subsets of x.

          Equations
          Instances For
            theorem SuperSymmetry.SU5.ChargeSpectrum.min_exists_inductive {๐“ฉ : Type} [DecidableEq ๐“ฉ] (S : Finset (ChargeSpectrum ๐“ฉ)) (hS : S โ‰  โˆ…) (n : โ„•) (hn : S.card = n) :
            โˆƒ y โˆˆ S, y.powerset โˆฉ S = {y}
            theorem SuperSymmetry.SU5.ChargeSpectrum.min_exists {๐“ฉ : Type} [DecidableEq ๐“ฉ] (S : Finset (ChargeSpectrum ๐“ฉ)) (hS : S โ‰  โˆ…) :
            โˆƒ y โˆˆ S, y.powerset โˆฉ S = {y}

            F. Finite sets of charge spectra with values #

            We define the finite set of ChargeSpectrum with 5-bar and 10d representation charges in a given finite set.

            def SuperSymmetry.SU5.ChargeSpectrum.ofFinset {๐“ฉ : Type} [DecidableEq ๐“ฉ] (S5 S10 : Finset ๐“ฉ) :
            Finset (ChargeSpectrum ๐“ฉ)

            Given S5 S10 : Finset ๐“ฉ the finite set of charges associated with for which the 5-bar representation charges sit in S5 and the 10d representation charges sit in S10.

            Equations
            • One or more equations did not get rendered due to their size.
            Instances For
              theorem SuperSymmetry.SU5.ChargeSpectrum.mem_ofFinset_antitone {๐“ฉ : Type} [DecidableEq ๐“ฉ] (S5 S10 : Finset ๐“ฉ) {x y : ChargeSpectrum ๐“ฉ} (h : x โІ y) (hy : y โˆˆ ofFinset S5 S10) :
              x โˆˆ ofFinset S5 S10
              theorem SuperSymmetry.SU5.ChargeSpectrum.ofFinset_subset_of_subset {๐“ฉ : Type} [DecidableEq ๐“ฉ] {S5 S5' S10 S10' : Finset ๐“ฉ} (h5 : S5 โІ S5') (h10 : S10 โІ S10') :
              ofFinset S5 S10 โІ ofFinset S5' S10'