The Classical Harmonic Oscillator #
@[simp]
@[simp]
@[simp]
The angular frequence of the classical harmonic osscilator is positive.
The square of the angular frequence of the classical harmonic osscilator is equal to k/m
.
@[simp]
The angular frequence of the classical harmonic osscilator is not equal to zero.
The inverse of the square of the angular frequence of the classical harmonic osscilator
is m/k
.
noncomputable def
ClassicalMechanics.HarmonicOscillator.kineticEnergy
(S : HarmonicOscillator)
(x : ℝ → ℝ)
:
The kinetic energy of the harmonic oscillator is 1/2 m (dx/dt) ^ 2
.
Instances For
noncomputable def
ClassicalMechanics.HarmonicOscillator.potentialEnergy
(S : HarmonicOscillator)
(x : ℝ → ℝ)
:
The potential energy of the harmonic oscillator is 1/2 k x ^ 2
Instances For
noncomputable def
ClassicalMechanics.HarmonicOscillator.energy
(S : HarmonicOscillator)
(x : ℝ → ℝ)
:
The energy of the harmonic oscillator is the kinetic energy plus the potential energy.
Equations
- S.energy x t = S.kineticEnergy x t + S.potentialEnergy x t
Instances For
noncomputable def
ClassicalMechanics.HarmonicOscillator.lagrangian
(S : HarmonicOscillator)
(x : ℝ → ℝ)
:
The lagrangian of the harmonic oscillator is the kinetic energy minus the potential energy.
Equations
- S.lagrangian x t = S.kineticEnergy x t - S.potentialEnergy x t
Instances For
theorem
ClassicalMechanics.HarmonicOscillator.lagrangian_parity
(S : HarmonicOscillator)
(x : ℝ → ℝ)
(hx : Differentiable ℝ x)
:
The lagrangian of the classical harmonic oscillator obeys the condition
lagrangian S (- x) = lagrangian S x
.