PhysLean Documentation

PhysLean.StringTheory.FTheory.SU5U1.Charges.Tree

Trees of charges #

It is convient to use FourTree to store charges. In this file we make some auxillary definitions and lemmas which will help us in proofs and make things faster.

In particular we define the root, trunk, branch, twig and leaf specifically for FourTree (Option ℤ) (Option ℤ) (Finset ℤ) (Finset ℤ), this allows Lean to read in large trees of charges more quickly.

We also prove some results related to (T.uniqueMap3 (insert q5.1)) and (T.uniqueMap4 (insert q10.1)), and their filters by a predicate p : Charges → Prop.

An explicit form of FourTree.Leaf.leaf for charges.

Equations
Instances For

    Inserting charges and minimal super sets #

    theorem FTheory.SU5U1.Charges.Tree.insert_filter_card_zero (T : PhysLean.FourTree (Option ) (Option ) (Finset ) (Finset )) (S5 S10 : Finset ) (p : ChargesProp) [DecidablePred p] (hComplet : xT, IsComplete x) (h10 : ∀ (q10 : { x : // x S10 }), Multiset.filter p (PhysLean.FourTree.uniqueMap4 (insert q10) T).toMultiset = ) (h5 : ∀ (q5 : { x : // x S5 }), Multiset.filter p (PhysLean.FourTree.uniqueMap3 (insert q5) T).toMultiset = ) (x : Option × Option × Finset × Finset ) :
    x TyminimalSuperSet S5 S10 x, yT¬p y
    theorem FTheory.SU5U1.Charges.Tree.subset_insert_filter_card_zero_inductive (T : PhysLean.FourTree (Option ) (Option ) (Finset ) (Finset )) (S5 S10 : Finset ) (p : ChargesProp) [DecidablePred p] (hnotSubset : ∀ (x y : Charges), x y¬p x¬p y) (hComplet : xT, IsComplete x) (x : Charges) (hx : x T) (y : Charges) (hsubset : x y) (hy : y ofFinset S5 S10) (h10 : ∀ (q10 : { x : // x S10 }), Multiset.filter p (PhysLean.FourTree.uniqueMap4 (insert q10) T).toMultiset = ) (h5 : ∀ (q5 : { x : // x S5 }), Multiset.filter p (PhysLean.FourTree.uniqueMap3 (insert q5) T).toMultiset = ) (n : ) (hn : n = y.card - x.card) :
    yT¬p y
    theorem FTheory.SU5U1.Charges.Tree.subset_insert_filter_card_zero (T : PhysLean.FourTree (Option ) (Option ) (Finset ) (Finset )) (S5 S10 : Finset ) (p : ChargesProp) [DecidablePred p] (hnotSubset : ∀ (x y : Charges), x y¬p x¬p y) (hComplet : xT, IsComplete x) (x : Charges) (hx : x T) (y : Charges) (hsubset : x y) (hy : y ofFinset S5 S10) (h10 : ∀ (q10 : { x : // x S10 }), Multiset.filter p (PhysLean.FourTree.uniqueMap4 (insert q10) T).toMultiset = ) (h5 : ∀ (q5 : { x : // x S5 }), Multiset.filter p (PhysLean.FourTree.uniqueMap3 (insert q5) T).toMultiset = ) :
    yT¬p y

    For a proposition p if (T.uniqueMap4 (insert q10.1)).toMultiset.filter p and (T.uniqueMap3 (insert q5.1)).toMultiset.filter p for all q5 ∈ S5 and q10 ∈ S10 then if x ∈ T and x ⊆ y if y ∉ T then ¬ p y. This assumes that all charges in T are complete, and that p satisfies x ⊆ y → ¬ p x → ¬ p y.