Complete of nonPhenoConstrainedCharges I
#
We show that the nonPhenoConstrainedCharges I
is complete, that is,
it contains every charge in ofFinset I.allowedBarFiveCharges I.allowedTenCharges
which is not pheno-constrained, permits a top yukawa and is complete.
Method #
The method of our proof is the following.
- We define
completionTopYukawa
which contains allcompletions
of elements which minimally allow the top Yukawa, which are not pheno-constrained. We show that every charge inofFinset I.allowedBarFiveCharges I.allowedTenCharges
which is not pheno-constrained and complete must contain an element ofcompletionTopYukawaSame
as a subset. - We show that
completionTopYukawa I
is a subset ofnonPhenoConstrainedCharges I
. - We then use the fact that one can not add to any charge in
nonPhenoConstrainedCharges
anotherQ5
orQ10
without remaining innonPhenoConstrainedCharges
or allowing a pheno-constraining term to be present.
This proof of completeness is more like a certification of completeness, rather than a constructive proof.
Key results #
not_isPhenoConstrained_iff_mem_nonPhenoConstrainedCharge
which specifies the completeness of the tree of chargesnonPhenoConstrainedCharges I
.
theorem
FTheory.SU5U1.Charges.nonPhenoConstrainedCharges_insertQ10_filter
(I : CodimensionOneConfig)
(q10 : { x : ℤ // x ∈ I.allowedTenCharges })
:
Multiset.filter (fun (x : Charges) => ¬x.IsPhenoConstrained)
(PhysLean.FourTree.uniqueMap4 (insert ↑q10) (nonPhenoConstrainedCharges I)).toMultiset = ∅
theorem
FTheory.SU5U1.Charges.nonPhenoConstrainedCharges_insertQ5_filter
(I : CodimensionOneConfig)
(q5 : { x : ℤ // x ∈ I.allowedBarFiveCharges })
:
Multiset.filter (fun (x : Charges) => ¬x.IsPhenoConstrained)
(PhysLean.FourTree.uniqueMap3 (insert ↑q5) (nonPhenoConstrainedCharges I)).toMultiset = ∅
theorem
FTheory.SU5U1.Charges.completionTopYukawa_complete_of_same
(x : Charges)
:
x ∈ minimallyAllowsTermsOfFinset CodimensionOneConfig.same.allowedBarFiveCharges
CodimensionOneConfig.same.allowedTenCharges SuperSymmetry.SU5.PotentialTerm.topYukawa →
¬x.IsPhenoConstrained →
∀ y ∈ completions CodimensionOneConfig.same.allowedBarFiveCharges CodimensionOneConfig.same.allowedTenCharges x,
¬y.IsPhenoConstrained → y ∈ FTheory.SU5U1.Charges.completionTopYukawa✝ CodimensionOneConfig.same
theorem
FTheory.SU5U1.Charges.completionTopYukawa_complete_of_nearestNeighbor
(x : Charges)
:
x ∈ minimallyAllowsTermsOfFinset CodimensionOneConfig.nearestNeighbor.allowedBarFiveCharges
CodimensionOneConfig.nearestNeighbor.allowedTenCharges SuperSymmetry.SU5.PotentialTerm.topYukawa →
¬x.IsPhenoConstrained →
∀
y ∈
completions CodimensionOneConfig.nearestNeighbor.allowedBarFiveCharges
CodimensionOneConfig.nearestNeighbor.allowedTenCharges x,
¬y.IsPhenoConstrained → y ∈ FTheory.SU5U1.Charges.completionTopYukawa✝ CodimensionOneConfig.nearestNeighbor
theorem
FTheory.SU5U1.Charges.completionTopYukawa_complete_of_nextToNearestNeighbor
(x : Charges)
:
x ∈ minimallyAllowsTermsOfFinset CodimensionOneConfig.nextToNearestNeighbor.allowedBarFiveCharges
CodimensionOneConfig.nextToNearestNeighbor.allowedTenCharges SuperSymmetry.SU5.PotentialTerm.topYukawa →
¬x.IsPhenoConstrained →
∀
y ∈
completions CodimensionOneConfig.nextToNearestNeighbor.allowedBarFiveCharges
CodimensionOneConfig.nextToNearestNeighbor.allowedTenCharges x,
¬y.IsPhenoConstrained → y ∈ FTheory.SU5U1.Charges.completionTopYukawa✝ CodimensionOneConfig.nextToNearestNeighbor
theorem
FTheory.SU5U1.Charges.completionTopYukawa_complete
{I : CodimensionOneConfig}
(x : Charges)
(hx :
x ∈ minimallyAllowsTermsOfFinset I.allowedBarFiveCharges I.allowedTenCharges SuperSymmetry.SU5.PotentialTerm.topYukawa)
(hPheno : ¬x.IsPhenoConstrained)
(y : Charges)
:
theorem
FTheory.SU5U1.Charges.exists_subset_completionTopYukawa_of_not_isPhenoConstrained
{I : CodimensionOneConfig}
{x : Charges}
(hx : ¬x.IsPhenoConstrained)
(htopYukawa : x.AllowsTerm SuperSymmetry.SU5.PotentialTerm.topYukawa)
(hsub : x ∈ ofFinset I.allowedBarFiveCharges I.allowedTenCharges)
(hcomplete : x.IsComplete)
:
∃ y ∈ FTheory.SU5U1.Charges.completionTopYukawa✝ I, y ⊆ x
theorem
FTheory.SU5U1.Charges.not_isPhenoConstrained_mem_nonPhenoConstrainedCharges
{I : CodimensionOneConfig}
{x : Charges}
(hx : ¬x.IsPhenoConstrained)
(hsub : x ∈ ofFinset I.allowedBarFiveCharges I.allowedTenCharges)
(hcomplete : x.IsComplete)
:
theorem
FTheory.SU5U1.Charges.not_isPhenoConstrained_iff_mem_nonPhenoConstrainedCharge
{I : CodimensionOneConfig}
{x : Charges}
(hsub : x ∈ ofFinset I.allowedBarFiveCharges I.allowedTenCharges)
: