Minimally allows terms #
Given a set of charges x : Charges
corresponding to charges of the representations
present in the thoery, and a potential term T : PotentialTerm
, we say that x
minimally allows T
if it allows the term T
and no proper subset of x
allows T
.
A collection of charges x : Charges
is said to minimally allow
the potential term T
if it allows T
and no strict subset of it allows T
.
Equations
- x.MinimallyAllowsTerm T = ∀ y ∈ x.powerset, y = x ↔ y.AllowsTerm T
Instances For
instance
FTheory.SU5U1.Charges.instDecidableMinimallyAllowsTerm
(x : Charges)
(T : SuperSymmetry.SU5.PotentialTerm)
:
Decidable (x.MinimallyAllowsTerm T)
Equations
- x.instDecidableMinimallyAllowsTerm T = inferInstanceAs (Decidable (∀ y ∈ x.powerset, y = x ↔ y.AllowsTerm T))
theorem
FTheory.SU5U1.Charges.allowsTerm_of_minimallyAllowsTerm
{T : SuperSymmetry.SU5.PotentialTerm}
{x : Charges}
(h : x.MinimallyAllowsTerm T)
:
x.AllowsTerm T
theorem
FTheory.SU5U1.Charges.allowsTerm_of_has_minimallyAllowsTerm_subset
{T : SuperSymmetry.SU5.PotentialTerm}
{x : Charges}
(hx : ∃ y ∈ x.powerset, y.MinimallyAllowsTerm T)
:
x.AllowsTerm T
theorem
FTheory.SU5U1.Charges.subset_minimallyAllowsTerm_of_allowsTerm
{T : SuperSymmetry.SU5.PotentialTerm}
{x : Charges}
(hx : x.AllowsTerm T)
:
∃ y ∈ x.powerset, y.MinimallyAllowsTerm T
theorem
FTheory.SU5U1.Charges.card_le_degree_of_minimallyAllowsTerm
{T : SuperSymmetry.SU5.PotentialTerm}
{x : Charges}
(h : x.MinimallyAllowsTerm T)
:
theorem
FTheory.SU5U1.Charges.eq_allowsTermForm_of_minimallyAllowsTerm
{T : SuperSymmetry.SU5.PotentialTerm}
{x : Charges}
(h1 : x.MinimallyAllowsTerm T)
:
∃ (a : ℤ) (b : ℤ) (c : ℤ), x = allowsTermForm a b c T
theorem
FTheory.SU5U1.Charges.allowsTermForm_minimallyAllowsTerm
{a b c : ℤ}
{T : SuperSymmetry.SU5.PotentialTerm}
(hT : T ≠ SuperSymmetry.SU5.PotentialTerm.W1 ∧ T ≠ SuperSymmetry.SU5.PotentialTerm.W2)
:
(allowsTermForm a b c T).MinimallyAllowsTerm T