Anomaly cancellation #
In this module we define the proposition IsAnomalyFree
on charges, which states
that the charges can be extended to quanta which are anomaly free.
We give the viable charges which are anomaly free for each of the three codimension one
configurations. This is in the lemma viable_anomalyFree
.
Anomaly coefficents of charges #
def
FTheory.SU5.Charges.IsAnomalyFree
{𝓩 : Type}
[DecidableEq 𝓩]
[CommRing 𝓩]
(c : SuperSymmetry.SU5.Charges 𝓩)
:
The condition on a collection of charges c
that it extends to an anomaly free Quanta
.
That anomaly free Quanta
is not tracked by this proposition.
Equations
- FTheory.SU5.Charges.IsAnomalyFree c = ∃ x ∈ FTheory.SU5.Quanta.ofChargesExpand c, FTheory.SU5.Quanta.AnomalyCancellation x.1 x.2.1 x.2.2.1 x.2.2.2
Instances For
instance
FTheory.SU5.Charges.instDecidableIsAnomalyFree
{𝓩 : Type}
[DecidableEq 𝓩]
[CommRing 𝓩]
{c : SuperSymmetry.SU5.Charges 𝓩}
:
The IsAnomalyFree condition under a map #
theorem
FTheory.SU5.Charges.isAnomalyFree_map
{𝓩 𝓩1 : Type}
[DecidableEq 𝓩1]
[DecidableEq 𝓩]
[CommRing 𝓩1]
[CommRing 𝓩]
(f : 𝓩 →+* 𝓩1)
{c : SuperSymmetry.SU5.Charges 𝓩}
(h : IsAnomalyFree c)
:
The viable charges which are anomaly free. #
The viable charges which are anomaly free.