PhysLean Documentation

PhysLean.SpaceAndTime.SpaceTime.Boosts

Boosts of space time #

i. Overview #

In this module we consider boosts acting on points in space time,and recover simple formulae for such applications.

Note that the material here currently assumes that the speed of light c = 1.

ii. Key results #

iii. Table of contents #

iv. References #

See e.g.

A. The action of a boost in the x-direction #

We show that boosting in the x-direction takes (t, x, y, z) to (γ (t - β x), γ (x - β t), y, z).

theorem SpaceTime.boost_x_smul (β : ) ( : |β| < 1) (x : SpaceTime) :
LorentzGroup.boost 0 β x = fun (x_1 : Fin 1 Fin 3) => match x_1 with | Sum.inl 0 => LorentzGroup.γ β * (x (Sum.inl 0) - β * x (Sum.inr 0)) | Sum.inr 0 => LorentzGroup.γ β * (x (Sum.inr 0) - β * x (Sum.inl 0)) | Sum.inr 1 => x (Sum.inr 1) | Sum.inr 2 => x (Sum.inr 2)
theorem SpaceTime.boost_zero_apply_time_space {d : } {β : } ( : |β| < 1) (c : SpeedOfLight) (t : Time) (x : Space d.succ) :
(LorentzGroup.boost 0 β )⁻¹ (toTimeAndSpace c).symm (t, x) = (toTimeAndSpace c).symm ({ val := LorentzGroup.γ β * (t.val + β / c.val * x.val 0) }, { val := fun (x_1 : Fin d.succ) => match x_1 with | 0, => LorentzGroup.γ β * (x.val 0 + c.val * β * t.val) | n.succ, ih => x.val n.succ, ih })