Constant slice distributions #
i. Overview #
In this moudule we define the lift of distributions on Space d to distributions
on Space d.succ which are constant between slices in the ith direction.
This is used, for example, to define distributions which are translationally invariant
in the ith direction.
Examples of distributions which can be constructed in this way include the dirac deltas for lines and planes, rather then points.
ii. Key results #
sliceSchwartz: The continuous linear map which takes a Schwartz map onSpace d.succand gives a Schwartz map onSpace dby integrating over theith direction.constantSliceDist: The distribution onSpace d.succformed by a distribution onSpace dwhich is translationally invariant in theith direction.
iii. Table of contents #
- A. Schwartz maps
- A.1. Bounded condition for derivatives of Schwartz maps on slices
- A.2. Integrability for of Schwartz maps on slices
- A.3. Continiuity of integrations of slices of Schwartz maps
- A.4. Derivative of integrations of slices of Schwartz maps
- A.5. Differentiability as a slices of Schwartz maps
- A.6. Smoothness as slices of Schwartz maps
- A.7. Iterated derivatives of integrations of slices of Schwartz maps
- A.8. The map integrating over one component of a Schwartz map
- B. Constant slice distribution
- B.1. Derivative of constant slice distributions
iv. References #
A. Schwartz maps #
A.1. Bounded condition for derivatives of Schwartz maps on slices #
theorem
Space.schwartzMap_slice_bound
{n m d : ℕ}
(i : Fin d.succ)
:
∃ (rt : ℕ),
∀ (η : SchwartzMap (Space d.succ) ℝ),
∃ (k : ℝ),
MeasureTheory.Integrable (fun (x : ℝ) => ‖((1 + ‖x‖) ^ rt)⁻¹‖) MeasureTheory.volume ∧ (∀ (x : Space d) (r : ℝ),
‖(slice i).symm (r, x)‖ ^ m * ‖iteratedFDeriv ℝ n (⇑η) ((slice i).symm (r, x))‖ ≤ k * ‖(1 + ‖r‖) ^ rt‖⁻¹) ∧ k = 2 ^ (rt + m, n).1 * ((Finset.Iic (rt + m, n)).sup fun (m : ℕ × ℕ) => SchwartzMap.seminorm ℝ m.1 m.2) η
A.2. Integrability for of Schwartz maps on slices #
theorem
Space.schwartzMap_integrable_slice_symm
{d : ℕ}
(i : Fin d.succ)
(η : SchwartzMap (Space d.succ) ℝ)
(x : Space d)
:
MeasureTheory.Integrable (fun (r : ℝ) => η ((slice i).symm (r, x))) MeasureTheory.volume
theorem
Space.schwartzMap_iteratedFDeriv_norm_slice_symm_integrable
{n d : ℕ}
(η : SchwartzMap (Space d.succ) ℝ)
(x : Space d)
(i : Fin d.succ)
:
MeasureTheory.Integrable (fun (r : ℝ) => ‖iteratedFDeriv ℝ n (⇑η) ((slice i).symm (r, x))‖) MeasureTheory.volume
theorem
Space.schwartzMap_iteratedFDeriv_slice_symm_integrable
{n d : ℕ}
(η : SchwartzMap (Space d.succ) ℝ)
(x : Space d)
(i : Fin d.succ)
:
MeasureTheory.Integrable (fun (r : ℝ) => iteratedFDeriv ℝ n (⇑η) ((slice i).symm (r, x))) MeasureTheory.volume
A.3. Continiuity of integrations of slices of Schwartz maps #
A.4. Derivative of integrations of slices of Schwartz maps #
A.5. Differentiability as a slices of Schwartz maps #
A.6. Smoothness as slices of Schwartz maps #
A.7. Iterated derivatives of integrations of slices of Schwartz maps #
theorem
Space.schwartzMap_slice_integral_iteratedFDeriv
{d : ℕ}
(n : ℕ)
(η : SchwartzMap (Space d.succ) ℝ)
(i : Fin d.succ)
(x : Space d)
:
theorem
Space.schwartzMap_slice_integral_iteratedFDeriv_norm_le
{d : ℕ}
(n : ℕ)
(η : SchwartzMap (Space d.succ) ℝ)
(i : Fin d.succ)
(x : Space d)
:
theorem
Space.schwartzMap_mul_pow_slice_integral_iteratedFDeriv_norm_le
{d : ℕ}
(n m : ℕ)
(i : Fin d.succ)
:
∃ (rt : ℕ),
∀ (η : SchwartzMap (Space d.succ) ℝ) (x : Space d),
MeasureTheory.Integrable (fun (x : ℝ) => ‖((1 + ‖x‖) ^ rt)⁻¹‖) MeasureTheory.volume ∧ ‖x‖ ^ m * ‖iteratedFDeriv ℝ n (fun (x : Space d) => ∫ (r : ℝ), η ((slice i).symm (r, x))) x‖ ≤ (∫ (r : ℝ), ‖((1 + ‖r‖) ^ rt)⁻¹‖) * ‖(↑(slice i).symm).comp (ContinuousLinearMap.prod 0 (ContinuousLinearMap.id ℝ (Space d)))‖ ^ n * (2 ^ (rt + m, n).1 * ((Finset.Iic (rt + m, n)).sup fun (m : ℕ × ℕ) => SchwartzMap.seminorm ℝ m.1 m.2) η)
A.8. The map integrating over one component of a Schwartz map #
The continuous linear map taking a Schwartz map and integrating over the ith component,
to give a Schwartz map of one dimension lower.
Equations
- Space.sliceSchwartz i = SchwartzMap.mkCLM (fun (η : SchwartzMap (Space d.succ) ℝ) (x : Space d) => ∫ (r : ℝ), η ((Space.slice i).symm (r, x))) ⋯ ⋯ ⋯ ⋯
Instances For
B. Constant slice distribution #
def
Space.constantSliceDist
{M : Type}
[NormedAddCommGroup M]
[NormedSpace ℝ M]
{d : ℕ}
(i : Fin d.succ)
:
Distributions on Space d.succ from distributions on Space d given a
direction i.
These distributions are constant on slices in the i direction..
Equations
- Space.constantSliceDist i = { toFun := fun (f : (Space d)→d[ℝ] M) => ContinuousLinearMap.comp f (Space.sliceSchwartz i), map_add' := ⋯, map_smul' := ⋯ }
Instances For
theorem
Space.constantSliceDist_apply
{M : Type}
[NormedAddCommGroup M]
[NormedSpace ℝ M]
{d : ℕ}
(i : Fin d.succ)
(f : (Space d)→d[ℝ] M)
(η : SchwartzMap (Space d.succ) ℝ)
:
B.1. Derivative of constant slice distributions #
theorem
Space.distDeriv_constantSliceDist_same
{M : Type}
[NormedAddCommGroup M]
[NormedSpace ℝ M]
{d : ℕ}
(i : Fin d.succ)
(f : (Space d)→d[ℝ] M)
:
theorem
Space.distDeriv_constantSliceDist_succAbove
{M : Type}
[NormedAddCommGroup M]
[NormedSpace ℝ M]
{d : ℕ}
(i : Fin d.succ)
(j : Fin d)
(f : (Space d)→d[ℝ] M)
: