PhysLean Documentation

PhysLean.SpaceAndTime.Space.ConstantSliceDist

Constant slice distributions #

i. Overview #

In this moudule we define the lift of distributions on Space d to distributions on Space d.succ which are constant between slices in the ith direction.

This is used, for example, to define distributions which are translationally invariant in the ith direction.

Examples of distributions which can be constructed in this way include the dirac deltas for lines and planes, rather then points.

ii. Key results #

iii. Table of contents #

iv. References #

A. Schwartz maps #

A.1. Bounded condition for derivatives of Schwartz maps on slices #

theorem Space.schwartzMap_slice_bound {n m d : } (i : Fin d.succ) :
∃ (rt : ), ∀ (η : SchwartzMap (Space d.succ) ), ∃ (k : ), MeasureTheory.Integrable (fun (x : ) => ((1 + x) ^ rt)⁻¹) MeasureTheory.volume (∀ (x : Space d) (r : ), (slice i).symm (r, x) ^ m * iteratedFDeriv n (⇑η) ((slice i).symm (r, x)) k * (1 + r) ^ rt⁻¹) k = 2 ^ (rt + m, n).1 * ((Finset.Iic (rt + m, n)).sup fun (m : × ) => SchwartzMap.seminorm m.1 m.2) η

A.2. Integrability for of Schwartz maps on slices #

A.3. Continiuity of integrations of slices of Schwartz maps #

theorem Space.continuous_schwartzMap_slice_integral {d : } (i : Fin d.succ) (η : SchwartzMap (Space d.succ) ) :
Continuous fun (x : Space d) => (r : ), η ((slice i).symm (r, x))

A.4. Derivative of integrations of slices of Schwartz maps #

theorem Space.schwartzMap_slice_integral_hasFDerivAt {d : } (η : SchwartzMap (Space d.succ) ) (i : Fin d.succ) (x₀ : Space d) :
HasFDerivAt (fun (x : Space d) => (r : ), η ((slice i).symm (r, x))) ( (r : ), fderiv (fun (x : Space d) => η ((slice i).symm (r, x))) x₀) x₀

A.5. Differentiability as a slices of Schwartz maps #

A.6. Smoothness as slices of Schwartz maps #

theorem Space.schwartzMap_slice_integral_contDiff {d : } (n : ) (η : SchwartzMap (Space d.succ) ) (i : Fin d.succ) :
ContDiff n fun (x : Space d) => (r : ), η ((slice i).symm (r, x))

A.7. Iterated derivatives of integrations of slices of Schwartz maps #

theorem Space.schwartzMap_slice_integral_iteratedFDeriv_apply {d : } (n : ) (η : SchwartzMap (Space d.succ) ) (i : Fin d.succ) (x : Space d) (y : Fin nSpace d) :
(iteratedFDeriv n (fun (x : Space d) => (r : ), η ((slice i).symm (r, x))) x) y = (r : ), (iteratedFDeriv n (⇑η) ((slice i).symm (r, x))) fun (j : Fin n) => (slice i).symm (0, y j)
theorem Space.schwartzMap_slice_integral_iteratedFDeriv {d : } (n : ) (η : SchwartzMap (Space d.succ) ) (i : Fin d.succ) (x : Space d) :
iteratedFDeriv n (fun (x : Space d) => (r : ), η ((slice i).symm (r, x))) x = ( (r : ), iteratedFDeriv n (⇑η) ((slice i).symm (r, x))).compContinuousLinearMap fun (x : Fin n) => (↑(slice i).symm).comp (ContinuousLinearMap.prod 0 (ContinuousLinearMap.id (Space d)))
theorem Space.schwartzMap_mul_pow_slice_integral_iteratedFDeriv_norm_le {d : } (n m : ) (i : Fin d.succ) :
∃ (rt : ), ∀ (η : SchwartzMap (Space d.succ) ) (x : Space d), MeasureTheory.Integrable (fun (x : ) => ((1 + x) ^ rt)⁻¹) MeasureTheory.volume x ^ m * iteratedFDeriv n (fun (x : Space d) => (r : ), η ((slice i).symm (r, x))) x ( (r : ), ((1 + r) ^ rt)⁻¹) * (↑(slice i).symm).comp (ContinuousLinearMap.prod 0 (ContinuousLinearMap.id (Space d))) ^ n * (2 ^ (rt + m, n).1 * ((Finset.Iic (rt + m, n)).sup fun (m : × ) => SchwartzMap.seminorm m.1 m.2) η)

A.8. The map integrating over one component of a Schwartz map #

The continuous linear map taking a Schwartz map and integrating over the ith component, to give a Schwartz map of one dimension lower.

Equations
Instances For
    theorem Space.sliceSchwartz_apply {d : } (i : Fin d.succ) (η : SchwartzMap (Space d.succ) ) (x : Space d) :
    ((sliceSchwartz i) η) x = (r : ), η ((slice i).symm (r, x))

    B. Constant slice distribution #

    Distributions on Space d.succ from distributions on Space d given a direction i. These distributions are constant on slices in the i direction..

    Equations
    Instances For

      B.1. Derivative of constant slice distributions #