Slices of space #
i. Overview #
In this module we will define the equivalence between Space d.succ and ℝ × Space d which
extracts the ith coordinate on Space d.succ.
ii. Key results #
slice: The continous linear equivalence betweenSpace d.succandℝ × Space dextracting theith coordinate.
iii. Table of contents #
- A. Slicing spaces
- A.1. Basic applications of the slicing map
- A.2. Slice as a measurable embedding
- A.3. The norm of the slice map
- A.4. Derivative of the slice map
- A.5. Basis in terms of slices
iv. References #
- https://leanprover.zulipchat.com/#narrow/channel/479953-PhysLean/topic/API.20around.20.60Space.20.28d1.20.2B.20d2.29.60.20to.20.60Space.20d1.20x.20Space.20d2.60/with/556754634
A. Slicing spaces #
A.1. Basic applications of the slicing map #
A.2. Slice as a measurable embedding #
theorem
Space.slice_symm_measurableEmbedding
{d : ℕ}
(i : Fin d.succ)
:
MeasurableEmbedding ⇑(slice i).symm
A.3. The norm of the slice map #
A.4. Derivative of the slice map #
theorem
Space.fderiv_fun_slice_symm_right_apply
{F : Type}
[NormedAddCommGroup F]
[NormedSpace ℝ F]
{d : ℕ}
(i : Fin d.succ)
(r : ℝ)
(x1 x2 : Space d)
(f : Space d.succ → F)
(hf : DifferentiableAt ℝ f ((slice i).symm (r, x1)))
:
theorem
Space.fderiv_fun_slice_symm_left_apply
{F : Type}
[NormedAddCommGroup F]
[NormedSpace ℝ F]
{d : ℕ}
(i : Fin d.succ)
(r1 r2 : ℝ)
(x : Space d)
(f : Space d.succ → F)
(hf : DifferentiableAt ℝ f ((slice i).symm (r1, x)))
: