The unit tensors #
noncomputable def
TensorSpecies.unitTensor
{k : Type}
[CommRing k]
{G : Type}
[Group G]
{S : TensorSpecies k G}
(c : S.C)
:
The unit tensor associated with a color c
.
Equations
- TensorSpecies.unitTensor c = TensorSpecies.Tensor.fromConstPair (S.unit.app { as := c })
Instances For
theorem
TensorSpecies.unitTensor_congr
{k : Type}
[CommRing k]
{G : Type}
[Group G]
{S : TensorSpecies k G}
{c c1 : S.C}
(h : c = c1)
:
theorem
TensorSpecies.unit_app_eq_dual_unit_app
{k : Type}
[CommRing k]
{G : Type}
[Group G]
{S : TensorSpecies k G}
(c : S.C)
:
S.unit.app { as := c } = CategoryTheory.CategoryStruct.comp (S.unit.app { as := S.τ c })
(CategoryTheory.CategoryStruct.comp (β_ (S.FD.obj { as := S.τ (S.τ c) }) (S.FD.obj { as := S.τ c })).hom
(CategoryTheory.MonoidalCategoryStruct.whiskerLeft (S.FD.obj { as := S.τ c })
(S.FD.map (CategoryTheory.Discrete.eqToHom ⋯))))
theorem
TensorSpecies.unitTensor_eq_permT_dual
{k : Type}
[CommRing k]
{G : Type}
[Group G]
{S : TensorSpecies k G}
(c : S.C)
:
The unit tensor is symmetric on dualing the color.
theorem
TensorSpecies.dual_unitTensor_eq_permT_unitTensor
{k : Type}
[CommRing k]
{G : Type}
[Group G]
{S : TensorSpecies k G}
(c : S.C)
:
theorem
TensorSpecies.unit_fromSingleTContrFromPairT_eq_fromSingleT
{k : Type}
[CommRing k]
{G : Type}
[Group G]
{S : TensorSpecies k G}
{c : S.C}
(x : ↑(S.FD.obj { as := c }).V)
:
Tensor.fromSingleTContrFromPairT x ((CategoryTheory.ConcreteCategory.hom (S.unit.app { as := c }).hom) 1) = Tensor.fromSingleT x
@[simp]
theorem
TensorSpecies.contrT_single_unitTensor
{k : Type}
[CommRing k]
{G : Type}
[Group G]
{S : TensorSpecies k G}
{c : S.C}
(x : S.Tensor ![c])
:
This lemma represents the de-categorification of S.contr_unit
.
@[simp]
theorem
TensorSpecies.unitTensor_invariant
{k : Type}
[CommRing k]
{G : Type}
[Group G]
{S : TensorSpecies k G}
{c : S.C}
(g : G)
: