PhysLean Documentation

PhysLean.Relativity.Tensors.UnitTensor

The unit tensors #

noncomputable def TensorSpecies.unitTensor {k : Type} [CommRing k] {G : Type} [Group G] {S : TensorSpecies k G} (c : S.C) :
S.Tensor ![S.τ c, c]

The unit tensor associated with a color c.

Equations
Instances For
    theorem TensorSpecies.unitTensor_congr {k : Type} [CommRing k] {G : Type} [Group G] {S : TensorSpecies k G} {c c1 : S.C} (h : c = c1) :
    theorem TensorSpecies.unitTensor_eq_permT_dual {k : Type} [CommRing k] {G : Type} [Group G] {S : TensorSpecies k G} (c : S.C) :

    The unit tensor is symmetric on dualing the color.

    @[simp]
    theorem TensorSpecies.contrT_single_unitTensor {k : Type} [CommRing k] {G : Type} [Group G] {S : TensorSpecies k G} {c : S.C} (x : S.Tensor ![c]) :
    (Tensor.contrT 1 0 1 ) ((Tensor.prodT x) (unitTensor c)) = (Tensor.permT id ) x

    This lemma represents the de-categorification of S.contr_unit.

    theorem TensorSpecies.contrT_unitTensor_dual_single {k : Type} [CommRing k] {G : Type} [Group G] {S : TensorSpecies k G} {c : S.C} (x : S.Tensor ![S.τ c]) :
    (Tensor.contrT 1 1 2 ) ((Tensor.prodT (unitTensor c)) x) = (Tensor.permT id ) x
    @[simp]
    theorem TensorSpecies.unitTensor_invariant {k : Type} [CommRing k] {G : Type} [Group G] {S : TensorSpecies k G} {c : S.C} (g : G) :