PhysLean Documentation

PhysLean.Relativity.Tensors.Dual

Dual tensors #

noncomputable def TensorSpecies.Tensor.fromDualMap {k : Type} [CommRing k] {G : Type} [Group G] {S : TensorSpecies k G} {c : S.C} :

The linear map taking a tensor based on the color S.τ c to a tensor based on the color c, defined by contraction with the metric tensor.

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    theorem TensorSpecies.Tensor.fromDualMap_apply {k : Type} [CommRing k] {G : Type} [Group G] {S : TensorSpecies k G} {c : S.C} (t : S.Tensor ![S.τ c]) :
    fromDualMap t = (permT id ) ((contrT 1 1 2 ) ((prodT (metricTensor c)) t))
    noncomputable def TensorSpecies.Tensor.toDualMap {k : Type} [CommRing k] {G : Type} [Group G] {S : TensorSpecies k G} {c : S.C} :

    The linear map taking a tensor based on the color c to a tensor based on the color S.τ c, defined by contraction with the metric tensor.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      theorem TensorSpecies.Tensor.toDualMap_apply {k : Type} [CommRing k] {G : Type} [Group G] {S : TensorSpecies k G} {c : S.C} (t : S.Tensor ![c]) :
      toDualMap t = (permT id ) ((contrT 1 1 2 ) ((prodT (metricTensor (S.τ c))) t))
      @[simp]
      theorem TensorSpecies.Tensor.toDualMap_fromDualMap {k : Type} [CommRing k] {G : Type} [Group G] {S : TensorSpecies k G} {c : S.C} (t : S.Tensor ![S.τ c]) :
      @[simp]
      theorem TensorSpecies.Tensor.fromDualMap_toDualMap {k : Type} [CommRing k] {G : Type} [Group G] {S : TensorSpecies k G} {c : S.C} (t : S.Tensor ![c]) :
      noncomputable def TensorSpecies.Tensor.toDual {k : Type} [CommRing k] {G : Type} [Group G] {S : TensorSpecies k G} {c : S.C} :

      The linear equivalence between S.Tensor ![c] and S.Tensor ![S.τ c] formed by contracting with metric tensors.

      Equations
      Instances For
        theorem TensorSpecies.Tensor.toDual_equivariant {k : Type} [CommRing k] {G : Type} [Group G] {S : TensorSpecies k G} {c : S.C} (g : G) (t : S.Tensor ![c]) :
        toDual (g t) = g toDual t
        @[simp]
        theorem TensorSpecies.repDim_τ {k : Type} [CommRing k] {G : Type} [Group G] {S : TensorSpecies k G} {c : S.C} [StrongRankCondition k] :
        S.repDim (S.τ c) = S.repDim c