Lemmas related to complex Lorentz tensors. #
theorem
complexLorentzTensor.antiSymm_contr_symm
{A : complexLorentzTensor.Tensor ![Color.up, Color.up]}
{S : complexLorentzTensor.Tensor ![Color.down, Color.down]}
(hA : TensorSpecies.Tensorial.toTensor A = (TensorSpecies.Tensor.permT ![1, 0] ⋯) (-TensorSpecies.Tensorial.toTensor A))
(hs : TensorSpecies.Tensorial.toTensor S = (TensorSpecies.Tensor.permT ![1, 0] ⋯) (TensorSpecies.Tensorial.toTensor S))
:
(TensorSpecies.Tensor.contrT 0 0 1 ⋯)
((TensorSpecies.Tensor.contrT 2 1 3 ⋯)
((TensorSpecies.Tensor.prodT (TensorSpecies.Tensorial.toTensor A)) (TensorSpecies.Tensorial.toTensor S))) = (TensorSpecies.Tensor.permT ![] ⋯)
(-(TensorSpecies.Tensor.contrT 0 0 1 ⋯)
((TensorSpecies.Tensor.contrT 2 1 3 ⋯)
((TensorSpecies.Tensor.prodT (TensorSpecies.Tensorial.toTensor A)) (TensorSpecies.Tensorial.toTensor S))))