Lemmas related to complex Lorentz tensors. #
theorem
complexLorentzTensor.antiSymm_contr_symm
{A : complexLorentzTensor.Tensor ![Color.up, Color.up]}
{S : complexLorentzTensor.Tensor ![Color.down, Color.down]}
(hA : A = (TensorSpecies.Tensor.permT ![1, 0] ⋯) (-A))
(hs : S = (TensorSpecies.Tensor.permT ![1, 0] ⋯) S)
:
(TensorSpecies.Tensor.contrT 0 0 1 ⋯) ((TensorSpecies.Tensor.contrT 2 1 3 ⋯) ((TensorSpecies.Tensor.prodT A) S)) = (TensorSpecies.Tensor.permT ![] ⋯)
(-(TensorSpecies.Tensor.contrT 0 0 1 ⋯) ((TensorSpecies.Tensor.contrT 2 1 3 ⋯) ((TensorSpecies.Tensor.prodT A) S)))