Time slice #
Time slicing functions on spacetime, turning them into a function
Time → Space d → M
.
This is useful when going from relativistic physics (defined using SpaceTime
)
to non-relativistic physics (defined using Space
and Time
).
The timeslice of a function SpaceTime d → M
forming a function
Time → Space d → M
, as a linear equivalence.
Equations
- SpaceTime.timeSliceLinearEquiv = { toFun := ⇑SpaceTime.timeSlice, map_add' := ⋯, map_smul' := ⋯, invFun := ⇑SpaceTime.timeSlice.symm, left_inv := ⋯, right_inv := ⋯ }
Instances For
theorem
SpaceTime.timeSliceLinearEquiv_apply
{d : ℕ}
{M : Type}
[AddCommGroup M]
[Module ℝ M]
(f : SpaceTime d → M)
:
theorem
SpaceTime.timeSliceLinearEquiv_symm_apply
{d : ℕ}
{M : Type}
[AddCommGroup M]
[Module ℝ M]
(f : Time → Space d → M)
:
theorem
SpaceTime.timeSlice_spatial_deriv
{M : Type}
[NormedAddCommGroup M]
[NormedSpace ℝ M]
{d : ℕ}
{f : SpaceTime d → M}
{t : Time}
{x : Space d}
(hdiff : DifferentiableAt ℝ f (toTimeAndSpace.symm (t, x)))
(i : Fin d)
:
The derivative on space commutes with time-slicing.
theorem
SpaceTime.timeSlice_time_deriv
{M : Type}
[NormedAddCommGroup M]
[NormedSpace ℝ M]
{d : ℕ}
(f : SpaceTime d → M)
{t : Time}
{x : Space d}
(hdiff : DifferentiableAt ℝ f (toTimeAndSpace.symm (t, x)))
:
timeSlice (deriv (finSumFinEquiv (Sum.inl 0)) f) t x = Time.deriv (fun (t : Time) => timeSlice f t x) t
The derivative on time commutes with time-slicing.