PhysLean Documentation

PhysLean.Relativity.PauliMatrices.SelfAdjoint

Interaction of Pauli matrices with self-adjoint matrices #

theorem PauliMatrix.trace_pauliMatrix_mul_selfAdjoint_re (μ : Fin 1 Fin 3) (A : (selfAdjoint (Matrix (Fin 2) (Fin 2) ))) :
(pauliMatrix μ * A).trace.re = (pauliMatrix μ * A).trace

The trace of a pauli-matrix multiplied by a self-adjoint 2×2 matrix is real.

theorem PauliMatrix.selfAdjoint_ext_complex {A B : (selfAdjoint (Matrix (Fin 2) (Fin 2) ))} (h0 : (pauliMatrix (Sum.inl 0) * A).trace = (pauliMatrix (Sum.inl 0) * B).trace) (h1 : (pauliMatrix (Sum.inr 0) * A).trace = (pauliMatrix (Sum.inr 0) * B).trace) (h2 : (pauliMatrix (Sum.inr 1) * A).trace = (pauliMatrix (Sum.inr 1) * B).trace) (h3 : (pauliMatrix (Sum.inr 2) * A).trace = (pauliMatrix (Sum.inr 2) * B).trace) :
A = B

Two 2×2 self-adjoint matrices are equal if the (complex) traces of each matrix multiplied by each of the Pauli-matrices are equal.

theorem PauliMatrix.selfAdjoint_ext {A B : (selfAdjoint (Matrix (Fin 2) (Fin 2) ))} (h0 : (pauliMatrix (Sum.inl 0) * A).trace.re = (pauliMatrix (Sum.inl 0) * B).trace.re) (h1 : (pauliMatrix (Sum.inr 0) * A).trace.re = (pauliMatrix (Sum.inr 0) * B).trace.re) (h2 : (pauliMatrix (Sum.inr 1) * A).trace.re = (pauliMatrix (Sum.inr 1) * B).trace.re) (h3 : (pauliMatrix (Sum.inr 2) * A).trace.re = (pauliMatrix (Sum.inr 2) * B).trace.re) :
A = B

Two 2×2 self-adjoint matrices are equal if the real traces of each matrix multiplied by each of the Pauli-matrices are equal.

An auxiliary function which on i : Fin 1 ⊕ Fin 3 returns the corresponding Pauli-matrix as a self-adjoint matrix.

Equations
Instances For

    The Pauli matrices span all self-adjoint matrices.

    The basis of selfAdjoint (Matrix (Fin 2) (Fin 2) ℂ) formed by Pauli matrices.

    Equations
    Instances For

      The Pauli matrices where σi are negated are linearly independent.

      The Pauli matrices where σi are negated span all Self-adjoint matrices.

      The basis of selfAdjoint (Matrix (Fin 2) (Fin 2) ℂ) formed by Pauli matrices where the 1, 2, 3 pauli matrices are negated. These can be thought of as the covariant Pauli-matrices.

      Equations
      Instances For
        theorem PauliMatrix.pauliBasis'_decomp (M : (selfAdjoint (Matrix (Fin 2) (Fin 2) ))) :
        M = (1 / 2 * (pauliMatrix (Sum.inl 0) * M).trace.re) pauliBasis' (Sum.inl 0) + (-1 / 2 * (pauliMatrix (Sum.inr 0) * M).trace.re) pauliBasis' (Sum.inr 0) + (-1 / 2 * (pauliMatrix (Sum.inr 1) * M).trace.re) pauliBasis' (Sum.inr 1) + (-1 / 2 * (pauliMatrix (Sum.inr 2) * M).trace.re) pauliBasis' (Sum.inr 2)

        The decomposition of a self-adjoint matrix into the Pauli matrices (where σi are negated).

        @[simp]
        theorem PauliMatrix.pauliBasis'_repr_inl_0 (M : (selfAdjoint (Matrix (Fin 2) (Fin 2) ))) :
        ((pauliBasis'.repr M) (Sum.inl 0)) = 1 / 2 * (pauliMatrix (Sum.inl 0) * M).trace

        The component of a self-adjoint matrix in the direction σ0 under the basis formed by the covariant Pauli matrices.

        @[simp]
        theorem PauliMatrix.pauliBasis'_repr_inr_0 (M : (selfAdjoint (Matrix (Fin 2) (Fin 2) ))) :
        ((pauliBasis'.repr M) (Sum.inr 0)) = -1 / 2 * (pauliMatrix (Sum.inr 0) * M).trace

        The component of a self-adjoint matrix in the direction -σ1 under the basis formed by the covariant Pauli matrices.

        @[simp]
        theorem PauliMatrix.pauliBasis'_repr_inr_1 (M : (selfAdjoint (Matrix (Fin 2) (Fin 2) ))) :
        ((pauliBasis'.repr M) (Sum.inr 1)) = -1 / 2 * (pauliMatrix (Sum.inr 1) * M).trace

        The component of a self-adjoint matrix in the direction -σ2 under the basis formed by the covariant Pauli matrices.

        @[simp]
        theorem PauliMatrix.pauliBasis'_repr_inr_2 (M : (selfAdjoint (Matrix (Fin 2) (Fin 2) ))) :
        ((pauliBasis'.repr M) (Sum.inr 2)) = -1 / 2 * (pauliMatrix (Sum.inr 2) * M).trace

        The component of a self-adjoint matrix in the direction -σ3 under the basis formed by the covariant Pauli matrices.

        The relationship between the basis pauliBasis of contravariant Pauli-matrices and the basis pauliBasis' of covariant Pauli matrices is by multiplication by the Minkowski matrix.