Contraction of indices of Pauli matrix. #
The main result of this file is pauliMatrix_contract_pauliMatrix
which states that
η_{μν} σ^{μ α dot β} σ^{ν α' dot β'} = 2 ε^{αα'} ε^{dot β dot β'}
.
The current way this result is proved is by using tensor tree manipulations. There is likely a more direct path to this result.
theorem
PauliMatrix.pauliCo_contr_pauliContr :
(TensorSpecies.Tensor.contrT 4 0 3 ⋯)
((TensorSpecies.Tensor.prodT (TensorSpecies.Tensorial.toTensor pauliCo))
(TensorSpecies.Tensorial.toTensor (TensorSpecies.Tensorial.toTensor pauliMatrix))) = (TensorSpecies.Tensor.permT ![0, 2, 1, 3] ⋯)
(2 • (TensorSpecies.Tensor.prodT (TensorSpecies.Tensorial.toTensor complexLorentzTensor.leftMetric))
(TensorSpecies.Tensorial.toTensor complexLorentzTensor.rightMetric))
The statement that σᵥᵃᵇ σᵛᵃ'ᵇ' = 2 εᵃᵃ' εᵇᵇ'
.
theorem
PauliMatrix.pauliCoDown_trace_pauliCo :
(TensorSpecies.Tensor.contrT 2 1 3 ⋯)
((TensorSpecies.Tensor.contrT 4 2 4 ⋯)
((TensorSpecies.Tensor.prodT (TensorSpecies.Tensorial.toTensor pauliCoDown))
(TensorSpecies.Tensorial.toTensor pauliCo))) = (TensorSpecies.Tensor.permT ![0, 1] ⋯) (2 • TensorSpecies.Tensorial.toTensor complexLorentzTensor.coMetric)
theorem
PauliMatrix.pauliCo_trace_pauliCoDown :
(TensorSpecies.Tensor.contrT 2 1 3 ⋯)
((TensorSpecies.Tensor.contrT 4 2 4 ⋯)
((TensorSpecies.Tensor.prodT (TensorSpecies.Tensorial.toTensor pauliCo))
(TensorSpecies.Tensorial.toTensor pauliCoDown))) = (TensorSpecies.Tensor.permT ![0, 1] ⋯) (2 • TensorSpecies.Tensorial.toTensor complexLorentzTensor.coMetric)
theorem
PauliMatrix.pauliContr_mul_pauliContrDown_add :
(TensorSpecies.Tensor.contrT 4 2 4 ⋯)
((TensorSpecies.Tensor.prodT (TensorSpecies.Tensorial.toTensor (TensorSpecies.Tensorial.toTensor pauliMatrix)))
(TensorSpecies.Tensorial.toTensor pauliContrDown)) + (TensorSpecies.Tensor.permT ![2, 1, 0, 3] ⋯)
((TensorSpecies.Tensor.contrT 4 2 4 ⋯)
((TensorSpecies.Tensor.prodT (TensorSpecies.Tensorial.toTensor (TensorSpecies.Tensorial.toTensor pauliMatrix)))
(TensorSpecies.Tensorial.toTensor pauliContrDown))) = (TensorSpecies.Tensor.permT ![0, 2, 1, 3] ⋯)
(2 • (TensorSpecies.Tensor.prodT (TensorSpecies.Tensorial.toTensor complexLorentzTensor.contrMetric))
(TensorSpecies.Tensorial.toTensor complexLorentzTensor.leftAltLeftUnit))
theorem
PauliMatrix.auliContrDown_pauliContr_mul_add :
(TensorSpecies.Tensor.contrT 4 2 4 ⋯)
((TensorSpecies.Tensor.prodT (TensorSpecies.Tensorial.toTensor pauliContrDown))
(TensorSpecies.Tensorial.toTensor (TensorSpecies.Tensorial.toTensor pauliMatrix))) + (TensorSpecies.Tensor.permT ![2, 1, 0, 3] ⋯)
((TensorSpecies.Tensor.contrT 4 2 4 ⋯)
((TensorSpecies.Tensor.prodT (TensorSpecies.Tensorial.toTensor pauliContrDown))
(TensorSpecies.Tensorial.toTensor (TensorSpecies.Tensorial.toTensor pauliMatrix)))) = (TensorSpecies.Tensor.permT ![0, 2, 1, 3] ⋯)
(2 • (TensorSpecies.Tensor.prodT (TensorSpecies.Tensorial.toTensor complexLorentzTensor.contrMetric))
(TensorSpecies.Tensorial.toTensor complexLorentzTensor.altRightRightUnit))