Unbounded operators #
Note #
It is likely one day the material in this file will be moved to or appear in another form within Mathlib.
def
QuantumMechanics.OneDimension.UnboundedOperator
{S : Type}
[AddCommGroup S]
[Module ℂ S]
[TopologicalSpace S]
(ι : S →L[ℂ] ↥HilbertSpace)
:
Function.Injective ⇑ι → Type
An unbounded operator on the one-dimensional Hilbert space,
corresponds to a subobject ι : S →L[ℂ] HilbertSpace
of the Hilbert
space along with the operator op : S →L[ℂ] HilbertSpace
Equations
Instances For
instance
QuantumMechanics.OneDimension.UnboundedOperator.instCoeFunForallSubtypeAEEqFunRealComplexVolumeMemAddSubgroupHilbertSpace
{S : Type}
[AddCommGroup S]
[Module ℂ S]
[TopologicalSpace S]
{ι : S →L[ℂ] ↥HilbertSpace}
{hι : Function.Injective ⇑ι}
:
CoeFun (UnboundedOperator ι hι) fun (x : UnboundedOperator ι hι) => S → ↥HilbertSpace
Equations
- One or more equations did not get rendered due to their size.
def
QuantumMechanics.OneDimension.UnboundedOperator.ofSelfCLM
{S : Type}
[AddCommGroup S]
[Module ℂ S]
[TopologicalSpace S]
{ι : S →L[ℂ] ↥HilbertSpace}
{hι : Function.Injective ⇑ι}
(Op : S →L[ℂ] S)
:
UnboundedOperator ι hι
An unbounded operator created from a continous linear map S →L[ℂ] S
.
Equations
Instances For
@[simp]
theorem
QuantumMechanics.OneDimension.UnboundedOperator.ofSelfCLM_apply
{S : Type}
[AddCommGroup S]
[Module ℂ S]
[TopologicalSpace S]
{ι : S →L[ℂ] ↥HilbertSpace}
{hι : Function.Injective ⇑ι}
(Op : S →L[ℂ] S)
(ψ : S)
:
def
QuantumMechanics.OneDimension.UnboundedOperator.IsGeneralizedEigenvector
{S : Type}
[AddCommGroup S]
[Module ℂ S]
[TopologicalSpace S]
{ι : S →L[ℂ] ↥HilbertSpace}
{hι : Function.Injective ⇑ι}
(U : UnboundedOperator ι hι)
(F : S →L[ℂ] ℂ)
(c : ℂ)
:
A map F : S →L[ℂ] ℂ
is a generalized eigenvector of an unbounded operator U
on S
if there is an eigenvalue c
such that for all ψ
, F (U ψ) = c ⬝ F ψ
Equations
Instances For
theorem
QuantumMechanics.OneDimension.UnboundedOperator.isGeneralizedEigenvector_ofSelfCLM_iff
{S : Type}
[AddCommGroup S]
[Module ℂ S]
[TopologicalSpace S]
{ι : S →L[ℂ] ↥HilbertSpace}
{hι : Function.Injective ⇑ι}
{Op : S →L[ℂ] S}
(F : S →L[ℂ] ℂ)
(c : ℂ)
:
def
QuantumMechanics.OneDimension.UnboundedOperator.IsSelfAdjoint
{S : Type}
[AddCommGroup S]
[Module ℂ S]
[TopologicalSpace S]
{ι : S →L[ℂ] ↥HilbertSpace}
{hι : Function.Injective ⇑ι}
(U : UnboundedOperator ι hι)
:
The condition on an unbounded operator to be self-adjoint.