Minimal super set #
Given a a colleciton of charges x
, and two sets of charges S5
and S10
,
a minimal super set of x
is the collection of charge y
which is a
super sets of x
, for which the the additional charges in y
are
corresponding in S5
and S10
, and which is minimal in this regard.
Given a collection of charges x
in ofFinset S5 S10
,
the minimimal charges y
in ofFinset S5 S10
which are a super sets of x
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
SuperSymmetry.SU5.Charges.self_subset_mem_minimalSuperSet
(S5 S10 : Finset ℤ)
(x y : Charges)
(hy : y ∈ minimalSuperSet S5 S10 x)
:
@[simp]
theorem
SuperSymmetry.SU5.Charges.self_not_mem_minimalSuperSet
(S5 S10 : Finset ℤ)
(x : Charges)
:
x ∉ minimalSuperSet S5 S10 x
theorem
SuperSymmetry.SU5.Charges.self_neq_mem_minimalSuperSet
(S5 S10 : Finset ℤ)
(x y : Charges)
(hy : y ∈ minimalSuperSet S5 S10 x)
:
theorem
SuperSymmetry.SU5.Charges.minimalSuperSet_induction_on_inductive
{S5 S10 : Finset ℤ}
(p : Charges → Prop)
(hp : ∀ (x : Charges), p x → ∀ y ∈ minimalSuperSet S5 S10 x, p y)
(x : Charges)
(hbase : p x)
(y : Charges)
(hy : y ∈ ofFinset S5 S10)
(hsubset : x ⊆ y)
(n : ℕ)
(hn : n = y.card - x.card)
:
p y