PhysLean Documentation

PhysLean.Particles.SuperSymmetry.SU5.Charges.MinimalSuperSet

Minimal super set #

Given a a colleciton of charges x, and two sets of charges S5 and S10, a minimal super set of x is the collection of charge y which is a super sets of x, for which the the additional charges in y are corresponding in S5 and S10, and which is minimal in this regard.

Given a collection of charges x in ofFinset S5 S10, the minimimal charges y in ofFinset S5 S10 which are a super sets of x.

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    theorem SuperSymmetry.SU5.Charges.insert_Q5_mem_minimalSuperSet {S5 S10 : Finset } {x : Charges} (z : ) (hz : z S5) (hznot : zx.2.2.1) :
    (x.1, x.2.1, insert z x.2.2.1, x.2.2.2) minimalSuperSet S5 S10 x
    theorem SuperSymmetry.SU5.Charges.insert_Q10_mem_minimalSuperSet {S5 S10 : Finset } {x : Charges} (z : ) (hz : z S10) (hznot : zx.2.2.2) :
    (x.1, x.2.1, x.2.2.1, insert z x.2.2.2) minimalSuperSet S5 S10 x
    theorem SuperSymmetry.SU5.Charges.exists_minimalSuperSet (S5 S10 : Finset ) {x y : Charges} (hy : y ofFinset S5 S10) (hsubset : x y) (hxneqy : x y) :
    zminimalSuperSet S5 S10 x, z y
    theorem SuperSymmetry.SU5.Charges.minimalSuperSet_induction_on_inductive {S5 S10 : Finset } (p : ChargesProp) (hp : ∀ (x : Charges), p xyminimalSuperSet S5 S10 x, p y) (x : Charges) (hbase : p x) (y : Charges) (hy : y ofFinset S5 S10) (hsubset : x y) (n : ) (hn : n = y.card - x.card) :
    p y