PhysLean Documentation

PhysLean.Particles.SuperSymmetry.SU5.Charges.Basic

Charges #

The data structure associated with additional charges in the SU(5) GUT model.

The type such that an element corresponds to the collection of charges associated with the matter content of the theory. The order of charges is implicitly taken to be qHd, qHu, Q5, Q10.

The Q5 and Q10 charges are represented by Finset rather than Multiset, so multiplicity is not included.

Equations
Instances For
    Equations
    • One or more equations did not get rendered due to their size.

    The explicit casting of a term of Charges to a term of Option ℤ × Option ℤ × Finset ℤ × Finset.

    Equations
    Instances For
      theorem SuperSymmetry.SU5.Charges.eq_of_parts {x y : Charges} (h1 : x.1 = y.1) (h2 : x.2.1 = y.2.1) (h3 : x.2.2.1 = y.2.2.1) (h4 : x.2.2.2 = y.2.2.2) :
      x = y

      ## Subsest relation

      Equations
      • One or more equations did not get rendered due to their size.
      theorem SuperSymmetry.SU5.Charges.subset_def {x y : Charges} :
      x y x.1.toFinset y.1.toFinset x.2.1.toFinset y.2.1.toFinset x.2.2.1 y.2.2.1 x.2.2.2 y.2.2.2
      theorem SuperSymmetry.SU5.Charges.subset_trans {x y z : Charges} (hxy : x y) (hyz : y z) :
      x z
      theorem SuperSymmetry.SU5.Charges.subset_antisymm {x y : Charges} (hxy : x y) (hyx : y x) :
      x = y

      The empty charges #

      Card #

      The cardinality of a Charges is defined to be the sum of the cardinalities of each of the underlying finite sets of charges, with Option turned to finsets.

      Equations
      Instances For
        theorem SuperSymmetry.SU5.Charges.eq_of_subset_card {x y : Charges} (h : x y) (hcard : x.card = y.card) :
        x = y

        Powerset #

        The powerset of x : Option defined as {none} if x is none and {none, some y} is x is some y.

        Equations
        Instances For

          The powerset of a charge . Given a charge x : Charges it's powerset is the finite set of all Charges which are subsets of x.

          Equations
          Instances For
            theorem SuperSymmetry.SU5.Charges.min_exists_inductive (S : Finset Charges) (hS : S ) (n : ) (hn : S.card = n) :
            yS, y.powerset S = {y}
            theorem SuperSymmetry.SU5.Charges.min_exists (S : Finset Charges) (hS : S ) :
            yS, y.powerset S = {y}

            ofFinset #

            Given S5 S10 : Finset the finite set of charges associated with for which the 5-bar representation charges sit in S5 and the 10d representation charges sit in S10.

            Equations
            • One or more equations did not get rendered due to their size.
            Instances For
              theorem SuperSymmetry.SU5.Charges.qHu_mem_ofFinset (S5 S10 : Finset ) (z : ) (x1 : Option ) (x2 : Finset × Finset ) (hsub : (x1, some z, x2) ofFinset S5 S10) :
              z S5
              theorem SuperSymmetry.SU5.Charges.mem_ofFinset_Q5_subset (S5 S10 : Finset ) {x : Charges} (hx : x ofFinset S5 S10) :
              x.2.2.1 S5
              theorem SuperSymmetry.SU5.Charges.mem_ofFinset_Q10_subset (S5 S10 : Finset ) {x : Charges} (hx : x ofFinset S5 S10) :
              x.2.2.2 S10
              theorem SuperSymmetry.SU5.Charges.mem_ofFinset_antitone (S5 S10 : Finset ) {x y : Charges} (h : x y) (hy : y ofFinset S5 S10) :
              x ofFinset S5 S10
              theorem SuperSymmetry.SU5.Charges.mem_ofFinset_iff {S5 S10 : Finset } {x : Charges} :
              x ofFinset S5 S10 x.1.toFinset S5 x.2.1.toFinset S5 x.2.2.1 S5 x.2.2.2 S10
              theorem SuperSymmetry.SU5.Charges.ofFinset_subset_of_subset {S5 S5' S10 S10' : Finset } (h5 : S5 S5') (h10 : S10 S10') :
              ofFinset S5 S10 ofFinset S5' S10'