PhysLean Documentation

PhysLean.Particles.StandardModel.HiggsBoson.Potential

The potential of the Higgs field #

We define the potential of the Higgs field.

We show that the potential is a smooth function on spacetime.

The Higgs potential #

The structure Potential is defined with two fields, μ2 corresponding to the mass-squared of the Higgs boson, and l corresponding to the coefficent of the quartic term in the Higgs potential. Note that l is usually denoted λ.

  • μ2 :

    The mass-squared of the Higgs boson.

  • 𝓵 :

    The quartic coupling of the Higgs boson. Usually denoted λ.

Instances For

    Given a element P of Potential, P.toFun is Higgs potential. It is defined for a Higgs field φ and a spacetime point x as

    -μ² ‖φ‖_H^2 x + l * ‖φ‖_H^2 x * ‖φ‖_H^2 x.

    Equations
    Instances For

      The Higgs potential formed by negating the mass squared and the quartic coupling.

      Equations
      Instances For

        Basic properties #

        theorem StandardModel.HiggsField.Potential.complete_square (P : Potential) (h : P.𝓵 0) (φ : HiggsField) (x : SpaceTime) :
        P.toFun φ x = P.𝓵 * (φ.normSq x - P.μ2 / (2 * P.𝓵)) ^ 2 - P.μ2 ^ 2 / (4 * P.𝓵)

        The quadratic equation satisfied by the Higgs potential at a spacetime point x.

        theorem StandardModel.HiggsField.Potential.toFun_eq_zero_iff (P : Potential) (h : P.𝓵 0) (φ : HiggsField) (x : SpaceTime) :
        P.toFun φ x = 0 φ x = 0 φ.normSq x = P.μ2 / P.𝓵

        The Higgs potential is zero iff and only if the higgs field is zero, or the higgs field has norm-squared P.μ2 / P.𝓵, assuming P.𝓁 = 0.

        The descriminant #

        The discriminant of the quadratic equation formed by the Higgs potential.

        Equations
        Instances For

          The discriminant of the quadratic formed by the potential is non-negative.

          For an element P of Potential, if l < 0 then the following upper bound for the potential exists

          P.toFun φ x ≤ - μ2 ^ 2 / (4 * 𝓵).

          For an element P of Potential, if 0 < l then the following lower bound for the potential exists

          - μ2 ^ 2 / (4 * 𝓵) ≤ P.toFun φ x.

          If P.𝓵 is negative, then if P.μ2 is greater than zero, for all space-time points, the potential is negative P.toFun φ x ≤ 0.

          If P.𝓵 is bigger then zero, then if P.μ2 is less than zero, for all space-time points, the potential is positive 0 ≤ P.toFun φ x.

          theorem StandardModel.HiggsField.Potential.neg_𝓵_sol_exists_iff (P : Potential) (h𝓵 : P.𝓵 < 0) (c : ) :
          (∃ (φ : HiggsField) (x : SpaceTime), P.toFun φ x = c) 0 < P.μ2 c 0 P.μ2 0 c -P.μ2 ^ 2 / (4 * P.𝓵)

          For an element P of Potential with l < 0 and a real c : ℝ, there exists a Higgs field φ and a spacetime point x such that P.toFun φ x = c iff one of the following two conditions hold:

          • 0 < μ2 and c ≤ 0. That is, if l is negative and μ2 positive, then the potential takes every non-positive value.
          • or μ2 ≤ 0 and c ≤ - μ2 ^ 2 / (4 * 𝓵). That is, if l is negative and μ2 non-positive, then the potential takes every value less then or equal to its bound.
          theorem StandardModel.HiggsField.Potential.pos_𝓵_sol_exists_iff (P : Potential) (h𝓵 : 0 < P.𝓵) (c : ) :
          (∃ (φ : HiggsField) (x : SpaceTime), P.toFun φ x = c) P.μ2 < 0 0 c 0 P.μ2 -P.μ2 ^ 2 / (4 * P.𝓵) c

          For an element P of Potential with 0 < l and a real c : ℝ, there exists a Higgs field φ and a spacetime point x such that P.toFun φ x = c iff one of the following two conditions hold:

          • μ2 < 0 and 0 ≤ c. That is, if l is positive and μ2 negative, then the potential takes every non-negative value.
          • or 0 ≤ μ2 and - μ2 ^ 2 / (4 * 𝓵) ≤ c. That is, if l is positive and μ2 non-negative, then the potential takes every value greater then or equal to its bound.

          Boundness of the potential #

          Given a element P of Potential, the proposition IsBounded P is true if and only if there exists a real c such that for all Higgs fields φ and spacetime points x, the Higgs potential corresponding to φ at x is greater then or equal toc. I.e.

          ∀ Φ x, c ≤ P.toFun Φ x.

          Equations
          Instances For

            Given a element P of Potential which is bounded, the quartic coefficent 𝓵 of P is non-negative.

            Given a element P of Potential with 0 < 𝓵, then the potential is bounded.

            When there is no quartic coupling, the potential is bounded iff the mass squared is non-positive, i.e., for P : Potential then P.IsBounded iff P.μ2 ≤ 0. That is to say - P.μ2 * ‖φ‖_H^2 x is bounded below iff P.μ2 ≤ 0.

            Equations
            Instances For

              Minimum and maximum #

              theorem StandardModel.HiggsField.Potential.isMinOn_iff_of_μSq_nonpos_𝓵_pos (P : Potential) (h𝓵 : 0 < P.𝓵) (hμ2 : P.μ2 0) (φ : HiggsField) (x : SpaceTime) :
              IsMinOn (fun (x : HiggsField × SpaceTime) => match x with | (φ, x) => P.toFun φ x) Set.univ (φ, x) P.toFun φ x = 0
              theorem StandardModel.HiggsField.Potential.isMinOn_iff_field_of_μSq_nonpos_𝓵_pos (P : Potential) (h𝓵 : 0 < P.𝓵) (hμ2 : P.μ2 0) (φ : HiggsField) (x : SpaceTime) :
              IsMinOn (fun (x : HiggsField × SpaceTime) => match x with | (φ, x) => P.toFun φ x) Set.univ (φ, x) φ x = 0
              theorem StandardModel.HiggsField.Potential.isMinOn_iff_of_μSq_nonneg_𝓵_pos (P : Potential) (h𝓵 : 0 < P.𝓵) (hμ2 : 0 P.μ2) (φ : HiggsField) (x : SpaceTime) :
              IsMinOn (fun (x : HiggsField × SpaceTime) => match x with | (φ, x) => P.toFun φ x) Set.univ (φ, x) P.toFun φ x = -P.μ2 ^ 2 / (4 * P.𝓵)
              theorem StandardModel.HiggsField.Potential.isMinOn_iff_field_of_μSq_nonneg_𝓵_pos (P : Potential) (h𝓵 : 0 < P.𝓵) (hμ2 : 0 P.μ2) (φ : HiggsField) (x : SpaceTime) :
              IsMinOn (fun (x : HiggsField × SpaceTime) => match x with | (φ, x) => P.toFun φ x) Set.univ (φ, x) φ.normSq x = P.μ2 / (2 * P.𝓵)
              theorem StandardModel.HiggsField.Potential.isMinOn_iff_field_of_𝓵_pos (P : Potential) (h𝓵 : 0 < P.𝓵) (φ : HiggsField) (x : SpaceTime) :
              IsMinOn (fun (x : HiggsField × SpaceTime) => match x with | (φ, x) => P.toFun φ x) Set.univ (φ, x) 0 P.μ2 φ.normSq x = P.μ2 / (2 * P.𝓵) P.μ2 < 0 φ x = 0

              Given an element P of Potential with 0 < l, then the Higgs field φ and spacetime point x minimize the potential if and only if one of the following conditions holds

              • 0 ≤ μ2 and ‖φ‖_H^2 x = μ2 / (2 * 𝓵).
              • or μ2 < 0 and φ x = 0.
              theorem StandardModel.HiggsField.Potential.isMaxOn_iff_isMinOn_neg (P : Potential) (φ : HiggsField) (x : SpaceTime) :
              IsMaxOn (fun (x : HiggsField × SpaceTime) => match x with | (φ, x) => P.toFun φ x) Set.univ (φ, x) IsMinOn (fun (x : HiggsField × SpaceTime) => match x with | (φ, x) => P.neg.toFun φ x) Set.univ (φ, x)
              theorem StandardModel.HiggsField.Potential.isMaxOn_iff_field_of_𝓵_neg (P : Potential) (h𝓵 : P.𝓵 < 0) (φ : HiggsField) (x : SpaceTime) :
              IsMaxOn (fun (x : HiggsField × SpaceTime) => match x with | (φ, x) => P.toFun φ x) Set.univ (φ, x) P.μ2 0 φ.normSq x = P.μ2 / (2 * P.𝓵) 0 < P.μ2 φ x = 0

              Given an element P of Potential with l < 0, then the Higgs field φ and spacetime point x maximizes the potential if and only if one of the following conditions holds

              • μ2 ≤ 0 and ‖φ‖_H^2 x = μ2 / (2 * 𝓵).
              • or 0 < μ2 and φ x = 0.