Relations for the CKM Matrix #
This file contains a collection of relations and properties between the elements of the CKM matrix.
The absolute value squared of the first row of a CKM matrix is 1
, in terms of nomSq
.
The absolute value squared of the second row of a CKM matrix is 1
, in terms of nomSq
.
The absolute value squared of the third row of a CKM matrix is 1
, in terms of nomSq
.
theorem
CKMMatrix.normSq_Vud_plus_normSq_Vus_neq_zero_ℝ
{V : CKMMatrix}
(hb : ↑V 0 0 ≠ 0 ∨ ↑V 0 1 ≠ 0)
:
theorem
CKMMatrix.normSq_Vud_plus_normSq_Vus_neq_zero_ℂ
{V : CKMMatrix}
(hb : ↑V 0 0 ≠ 0 ∨ ↑V 0 1 ≠ 0)
:
theorem
CKMMatrix.fst_row_orthog_snd_row
(V : CKMMatrix)
:
↑V 1 0 * (starRingEnd ℂ) (↑V 0 0) + ↑V 1 1 * (starRingEnd ℂ) (↑V 0 1) + ↑V 1 2 * (starRingEnd ℂ) (↑V 0 2) = 0
theorem
CKMMatrix.fst_row_orthog_thd_row
(V : CKMMatrix)
:
↑V 2 0 * (starRingEnd ℂ) (↑V 0 0) + ↑V 2 1 * (starRingEnd ℂ) (↑V 0 1) + ↑V 2 2 * (starRingEnd ℂ) (↑V 0 2) = 0
theorem
CKMMatrix.Vcd_mul_conj_Vud
(V : CKMMatrix)
:
↑V 1 0 * (starRingEnd ℂ) (↑V 0 0) = -↑V 1 1 * (starRingEnd ℂ) (↑V 0 1) - ↑V 1 2 * (starRingEnd ℂ) (↑V 0 2)
theorem
CKMMatrix.Vcs_mul_conj_Vus
(V : CKMMatrix)
:
↑V 1 1 * (starRingEnd ℂ) (↑V 0 1) = -↑V 1 0 * (starRingEnd ℂ) (↑V 0 0) - ↑V 1 2 * (starRingEnd ℂ) (↑V 0 2)
theorem
CKMMatrix.VAbs_thd_eq_one_fst_eq_zero
{V : Quotient CKMMatrixSetoid}
{i : Fin 3}
(hV : VAbs i 2 V = 1)
:
theorem
CKMMatrix.VAbs_thd_eq_one_snd_eq_zero
{V : Quotient CKMMatrixSetoid}
{i : Fin 3}
(hV : VAbs i 2 V = 1)
:
theorem
CKMMatrix.conj_Vtb_cross_product
{V : CKMMatrix}
{τ : ℝ}
(hτ :
V.tRow = Complex.exp (↑τ * Complex.I) • (crossProduct ((starRingEnd (Fin 3 → ℂ)) V.uRow)) ((starRingEnd (Fin 3 → ℂ)) V.cRow))
:
theorem
CKMMatrix.conj_Vtb_mul_Vud
{V : CKMMatrix}
{τ : ℝ}
(hτ :
V.tRow = Complex.exp (↑τ * Complex.I) • (crossProduct ((starRingEnd (Fin 3 → ℂ)) V.uRow)) ((starRingEnd (Fin 3 → ℂ)) V.cRow))
:
Complex.exp (↑τ * Complex.I) * (starRingEnd ℂ) (↑V 2 2) * (starRingEnd ℂ) (↑V 0 0) = ↑V 1 1 * (↑(Complex.normSq (↑V 0 0)) + ↑(Complex.normSq (↑V 0 1))) + ↑V 1 2 * (starRingEnd ℂ) (↑V 0 2) * ↑V 0 1
theorem
CKMMatrix.conj_Vtb_mul_Vus
{V : CKMMatrix}
{τ : ℝ}
(hτ :
V.tRow = Complex.exp (↑τ * Complex.I) • (crossProduct ((starRingEnd (Fin 3 → ℂ)) V.uRow)) ((starRingEnd (Fin 3 → ℂ)) V.cRow))
:
Complex.exp (↑τ * Complex.I) * (starRingEnd ℂ) (↑V 2 2) * (starRingEnd ℂ) (↑V 0 1) = -(↑V 1 0 * (↑(Complex.normSq (↑V 0 0)) + ↑(Complex.normSq (↑V 0 1))) + ↑V 1 2 * (starRingEnd ℂ) (↑V 0 2) * ↑V 0 0)
theorem
CKMMatrix.cs_of_ud_us_ub_cb_tb
{V : CKMMatrix}
(h : ↑V 0 0 ≠ 0 ∨ ↑V 0 1 ≠ 0)
{τ : ℝ}
(hτ :
V.tRow = Complex.exp (↑τ * Complex.I) • (crossProduct ((starRingEnd (Fin 3 → ℂ)) V.uRow)) ((starRingEnd (Fin 3 → ℂ)) V.cRow))
:
↑V 1 1 = (-(starRingEnd ℂ) (↑V 0 2) * ↑V 0 1 * ↑V 1 2 + Complex.exp (↑τ * Complex.I) * (starRingEnd ℂ) (↑V 2 2) * (starRingEnd ℂ) (↑V 0 0)) / (↑(Complex.normSq (↑V 0 0)) + ↑(Complex.normSq (↑V 0 1)))
theorem
CKMMatrix.cd_of_ud_us_ub_cb_tb
{V : CKMMatrix}
(h : ↑V 0 0 ≠ 0 ∨ ↑V 0 1 ≠ 0)
{τ : ℝ}
(hτ :
V.tRow = Complex.exp (↑τ * Complex.I) • (crossProduct ((starRingEnd (Fin 3 → ℂ)) V.uRow)) ((starRingEnd (Fin 3 → ℂ)) V.cRow))
:
↑V 1 0 = -((starRingEnd ℂ) (↑V 0 2) * ↑V 0 0 * ↑V 1 2 + Complex.exp (↑τ * Complex.I) * (starRingEnd ℂ) (↑V 2 2) * (starRingEnd ℂ) (↑V 0 1)) / (↑(Complex.normSq (↑V 0 0)) + ↑(Complex.normSq (↑V 0 1)))
theorem
CKMMatrix.VAbs_fst_col_eq_one_snd_eq_zero
{V : Quotient CKMMatrixSetoid}
{i : Fin 3}
(hV : VAbs 0 i V = 1)
:
theorem
CKMMatrix.VAbs_fst_col_eq_one_thd_eq_zero
{V : Quotient CKMMatrixSetoid}
{i : Fin 3}
(hV : VAbs 0 i V = 1)
: