PhysLean Documentation

PhysLean.Particles.BeyondTheStandardModel.TwoHDM.Potential

The potential of the two Higgs doublet model #

i. Overview #

In this file we give the potential of the two Higgs doublet model (2HDM) in Lean, and derive properties thereof.

Note: This file is currently independent of TwoHiggsDoublet, it is a TODO to integrate them.

The parameters of the Two Higgs doublet model potential.

  • m₁₁2 :

    The parameter corresponding to m₁₁² in the 2HDM potential.

  • m₂₂2 :

    The parameter corresponding to m₂₂² in the 2HDM potential.

  • m₁₂2 :

    The parameter corresponding to m₁₂² in the 2HDM potential.

  • 𝓵₁ :

    The parameter corresponding to λ₁ in the 2HDM potential.

  • 𝓵₂ :

    The parameter corresponding to λ₂ in the 2HDM potential.

  • 𝓵₃ :

    The parameter corresponding to λ₃ in the 2HDM potential.

  • 𝓵₄ :

    The parameter corresponding to λ₄ in the 2HDM potential.

  • 𝓵₅ :

    The parameter corresponding to λ₅ in the 2HDM potential.

  • 𝓵₆ :

    The parameter corresponding to λ₆ in the 2HDM potential.

  • 𝓵₇ :

    The parameter corresponding to λ₇ in the 2HDM potential.

Instances For

    The potential of the two Higgs doublet model.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For

      The potential where all parameters are zero.

      Equations
      • TwoHDM.Potential.zero = { m₁₁2 := 0, m₂₂2 := 0, m₁₂2 := 0, 𝓵₁ := 0, 𝓵₂ := 0, 𝓵₃ := 0, 𝓵₄ := 0, 𝓵₅ := 0, 𝓵₆ := 0, 𝓵₇ := 0 }
      Instances For
        theorem TwoHDM.Potential.swap_fields (P : Potential) (Φ1 Φ2 : StandardModel.HiggsField) :
        P.toFun Φ1 Φ2 = { m₁₁2 := P.m₂₂2, m₂₂2 := P.m₁₁2, m₁₂2 := (starRingEnd ) P.m₁₂2, 𝓵₁ := P.𝓵₂, 𝓵₂ := P.𝓵₁, 𝓵₃ := P.𝓵₃, 𝓵₄ := P.𝓵₄, 𝓵₅ := (starRingEnd ) P.𝓵₅, 𝓵₆ := (starRingEnd ) P.𝓵₇, 𝓵₇ := (starRingEnd ) P.𝓵₆ }.toFun Φ2 Φ1
        theorem TwoHDM.Potential.right_zero (P : Potential) (Φ1 : StandardModel.HiggsField) :
        P.toFun Φ1 0 = { μ2 := -P.m₁₁2, 𝓵 := P.𝓵₁ / 2 }.toFun Φ1

        If Φ₂ is zero the potential reduces to the Higgs potential on Φ₁.

        theorem TwoHDM.Potential.left_zero (P : Potential) (Φ2 : StandardModel.HiggsField) :
        P.toFun 0 Φ2 = { μ2 := -P.m₂₂2, 𝓵 := P.𝓵₂ / 2 }.toFun Φ2

        If Φ₁ is zero the potential reduces to the Higgs potential on Φ₂.

        theorem TwoHDM.Potential.neg_left (P : Potential) (Φ1 Φ2 : StandardModel.HiggsField) :
        P.toFun (-Φ1) Φ2 = { m₁₁2 := P.m₁₁2, m₂₂2 := P.m₂₂2, m₁₂2 := -P.m₁₂2, 𝓵₁ := P.𝓵₁, 𝓵₂ := P.𝓵₂, 𝓵₃ := P.𝓵₃, 𝓵₄ := P.𝓵₄, 𝓵₅ := P.𝓵₅, 𝓵₆ := -P.𝓵₆, 𝓵₇ := -P.𝓵₇ }.toFun Φ1 Φ2

        Negating Φ₁ is equivalent to negating m₁₂2, 𝓵₆ and 𝓵₇.

        theorem TwoHDM.Potential.neg_right (P : Potential) (Φ1 Φ2 : StandardModel.HiggsField) :
        P.toFun Φ1 (-Φ2) = { m₁₁2 := P.m₁₁2, m₂₂2 := P.m₂₂2, m₁₂2 := -P.m₁₂2, 𝓵₁ := P.𝓵₁, 𝓵₂ := P.𝓵₂, 𝓵₃ := P.𝓵₃, 𝓵₄ := P.𝓵₄, 𝓵₅ := P.𝓵₅, 𝓵₆ := -P.𝓵₆, 𝓵₇ := -P.𝓵₇ }.toFun Φ1 Φ2

        Negating Φ₁ is equivalent to negating m₁₂2, 𝓵₆ and 𝓵₇.

        Potential bounded from below #

        The proposition on the coefficients for a potential to be bounded.

        Equations
        Instances For