PhysLean Documentation

PhysLean.Electromagnetism.Wave

Electromagnetic wave equation #

The electromagnetic wave eqaution as a consequence of the charge and current free Maxwell's Equations in homogeneous isotropic medium.

The electromagnetic wave equation for electric field.

The electromagnetic wave equation for magnetic field.

An electric plane wave travelling in the direction of s with propagation speed c.

Equations
Instances For

    A magnetic plane wave travelling in the direction of s with propagation speed c.

    Equations
    Instances For
      theorem Electromagnetism.transverse_upto_time_fun_of_eq_electricPlaneWave (OM : OpticalMedium) {c : } {E₀ : EuclideanSpace (Fin 3)} {s : Space.Direction} {E : ElectricField} {B : MagneticField} (hEwave : E = electricPlaneWave E₀ c s) (h' : Differentiable E₀) (hm : OM.FreeMaxwellEquations E B) :
      ∃ (c : TimeEuclideanSpace (Fin 3)), ∀ (t : Time) (x : Space), inner (E t x) (s.unit 3) = inner (c t) (s.unit 3)

      An electric plane wave minus a constant field is transverse for all x.

      theorem Electromagnetism.transverse_upto_time_fun_of_eq_magneticPlaneWave (OM : OpticalMedium) {c : } {B₀ : EuclideanSpace (Fin 3)} {s : Space.Direction} {E : ElectricField} {B : MagneticField} (hBwave : B = magneticPlaneWave B₀ c s) (h' : Differentiable B₀) (hm : OM.FreeMaxwellEquations E B) :
      ∃ (c : TimeEuclideanSpace (Fin 3)), ∀ (t : Time) (x : Space), inner (B t x) (s.unit 3) = inner (c t) (s.unit 3)

      An magnetic plane wave minus a constant field is transverse for all x.

      theorem Electromagnetism.time_deriv_electricPlaneWave_eq_cross_time_deriv_magneticPlaneWave (OM : OpticalMedium) {c : } {t : Time} {x : Space} {B₀ : EuclideanSpace (Fin 3)} {s : Space.Direction} {E : ElectricField} {B : MagneticField} (hc : c = ((OM.μ OM.ε))⁻¹) (hBwave : B = magneticPlaneWave B₀ c s) (h' : Differentiable B₀) (hm : OM.FreeMaxwellEquations E B) :
      Time.deriv (fun (t : Time) => E t x) t = -((OM.μ OM.ε))⁻¹ (fun (a b : WithLp 2 (Fin 3)) => (WithLp.equiv 2 (Fin 3)).symm ((crossProduct ((WithLp.equiv 2 (Fin 3)) a)) ((WithLp.equiv 2 (Fin 3)) b))) (s.unit 3) (Time.deriv (fun (t : Time) => B t x) t)

      The time derivative of a magnetic planewave induces an electric field with time derivative equal to - s ⨯ₑ₃ B'.

      theorem Electromagnetism.time_deriv_magneticPlaneWave_eq_cross_time_deriv_electricPlaneWave (OM : OpticalMedium) {c : } {t : Time} {x : Space} {E₀ : EuclideanSpace (Fin 3)} {s : Space.Direction} {E : ElectricField} {B : MagneticField} (hc : c = ((OM.μ OM.ε))⁻¹) (hEwave : E = electricPlaneWave E₀ c s) (h' : Differentiable E₀) (hm : OM.FreeMaxwellEquations E B) :
      Time.deriv (fun (t : Time) => B t x) t = (OM.μ OM.ε) (fun (a b : WithLp 2 (Fin 3)) => (WithLp.equiv 2 (Fin 3)).symm ((crossProduct ((WithLp.equiv 2 (Fin 3)) a)) ((WithLp.equiv 2 (Fin 3)) b))) (s.unit 3) (Time.deriv (fun (t : Time) => E t x) t)

      The time derivative of an electric planewave induces a magnetic field with time derivative equal to s ⨯ₑ₃ E'.

      theorem Electromagnetism.electricPlaneWave_eq_cross_magneticPlaneWave_upto_space_fun (OM : OpticalMedium) {c : } {B₀ : EuclideanSpace (Fin 3)} {s : Space.Direction} {E : ElectricField} {B : MagneticField} (hc : c = ((OM.μ OM.ε))⁻¹) (hBwave : B = magneticPlaneWave B₀ c s) (h' : Differentiable B₀) (hm : OM.FreeMaxwellEquations E B) (hE : Differentiable E) :
      ∃ (c : SpaceEuclideanSpace (Fin 3)), ∀ (t : Time) (x : Space), E t x = -((OM.μ OM.ε))⁻¹ (fun (a b : WithLp 2 (Fin 3)) => (WithLp.equiv 2 (Fin 3)).symm ((crossProduct ((WithLp.equiv 2 (Fin 3)) a)) ((WithLp.equiv 2 (Fin 3)) b))) (s.unit 3) (B t x) + c x

      A magnetic planewave induces an electric field equal to - s ⨯ₑ₃ B plus a constant field.

      theorem Electromagnetism.magneticPlaneWave_eq_cross_electricPlaneWave_upto_space_fun (OM : OpticalMedium) {c : } {E₀ : EuclideanSpace (Fin 3)} {s : Space.Direction} {E : ElectricField} {B : MagneticField} (hc : c = ((OM.μ OM.ε))⁻¹) (hEwave : E = electricPlaneWave E₀ c s) (h' : Differentiable E₀) (hm : OM.FreeMaxwellEquations E B) (hB : Differentiable B) :
      ∃ (c : SpaceEuclideanSpace (Fin 3)), ∀ (t : Time) (x : Space), B t x = (OM.μ OM.ε) (fun (a b : WithLp 2 (Fin 3)) => (WithLp.equiv 2 (Fin 3)).symm ((crossProduct ((WithLp.equiv 2 (Fin 3)) a)) ((WithLp.equiv 2 (Fin 3)) b))) (s.unit 3) (E t x) + c x

      An electric planewave induces an magnetic field equal to s ×₃ E plus a constant field.

      theorem Electromagnetism.electricField_transverse_upto_const_of_EMwave (OM : OpticalMedium) {c : } {s : Space.Direction} {E₀ B₀ : EuclideanSpace (Fin 3)} {E : ElectricField} {B : MagneticField} (hc : c = ((OM.μ OM.ε))⁻¹) (hEwave : E = electricPlaneWave E₀ c s) (hBwave : B = magneticPlaneWave B₀ c s) (hE' : Differentiable E₀) (hB' : Differentiable B₀) (hm : OM.FreeMaxwellEquations E B) :
      ∃ (c : EuclideanSpace (Fin 3)), ∀ (t : Time) (x : Space), inner (E t x - c) (s.unit 3) = 0

      The electric field of an EMwave minus a constant field is transverse.

      theorem Electromagnetism.magneticField_transverse_upto_const_of_EMwave (OM : OpticalMedium) {c : } {s : Space.Direction} {E₀ B₀ : EuclideanSpace (Fin 3)} {E : ElectricField} {B : MagneticField} (hc : c = ((OM.μ OM.ε))⁻¹) (hEwave : E = electricPlaneWave E₀ c s) (hBwave : B = magneticPlaneWave B₀ c s) (hE' : Differentiable E₀) (hB' : Differentiable B₀) (hm : OM.FreeMaxwellEquations E B) :
      ∃ (c : EuclideanSpace (Fin 3)), ∀ (t : Time) (x : Space), inner (B t x - c) (s.unit 3) = 0

      The magnetic field of an EMwave minus a constant field is transverse.

      theorem Electromagnetism.electricField_add_cross_magneticField_eq_const_of_planeWave (OM : OpticalMedium) {c : } {s : Space.Direction} {E₀ B₀ : EuclideanSpace (Fin 3)} {E : ElectricField} {B : MagneticField} (hc : c = ((OM.μ OM.ε))⁻¹) (hEwave : E = electricPlaneWave E₀ c s) (hBwave : B = magneticPlaneWave B₀ c s) (hE' : Differentiable E₀) (hB' : Differentiable B₀) (hm : OM.FreeMaxwellEquations E B) :
      ∃ (Ec : EuclideanSpace (Fin 3)), ∀ (t : Time) (x : Space), E t x + ((OM.μ OM.ε))⁻¹ (fun (a b : WithLp 2 (Fin 3)) => (WithLp.equiv 2 (Fin 3)).symm ((crossProduct ((WithLp.equiv 2 (Fin 3)) a)) ((WithLp.equiv 2 (Fin 3)) b))) (s.unit 3) (B t x) = Ec

      E + s ⨯ₑ₃ B is constant for an EMwave.

      theorem Electromagnetism.magneticField_sub_cross_electricField_eq_const_of_planeWave (OM : OpticalMedium) {c : } {s : Space.Direction} {E₀ B₀ : EuclideanSpace (Fin 3)} {E : ElectricField} {B : MagneticField} (hc : c = ((OM.μ OM.ε))⁻¹) (hEwave : E = electricPlaneWave E₀ c s) (hBwave : B = magneticPlaneWave B₀ c s) (hE' : Differentiable E₀) (hB' : Differentiable B₀) (hm : OM.FreeMaxwellEquations E B) :
      ∃ (Ec : EuclideanSpace (Fin 3)), ∀ (t : Time) (x : Space), B t x - (OM.μ OM.ε) (fun (a b : WithLp 2 (Fin 3)) => (WithLp.equiv 2 (Fin 3)).symm ((crossProduct ((WithLp.equiv 2 (Fin 3)) a)) ((WithLp.equiv 2 (Fin 3)) b))) (s.unit 3) (E t x) = Ec

      B - s ⨯ₑ₃ E is constant for an EMwave.

      theorem Electromagnetism.orthonormal_triad_of_electromagneticplaneWave (OM : OpticalMedium) {c : } {s : Space.Direction} {E₀ B₀ : EuclideanSpace (Fin 3)} {E : ElectricField} {B : MagneticField} (hc : c = ((OM.μ OM.ε))⁻¹) (hEwave : E = electricPlaneWave E₀ c s) (hBwave : B = magneticPlaneWave B₀ c s) (hE' : Differentiable E₀) (hB' : Differentiable B₀) (hm : OM.FreeMaxwellEquations E B) :
      ∃ (Ep : EuclideanSpace (Fin 3)) (Bp : EuclideanSpace (Fin 3)), ∀ (t : Time) (x : Space), E t x - Ep 0 B t x - Bp 0Orthonormal ![E t x - Ep⁻¹ (E t x - Ep), B t x - Bp⁻¹ (B t x - Bp), s.unit 3]

      Unit vectors in the direciton of B, E and s form an orthonormal traid for an EMwave after subtracting the appropriate constant fields.