PhysLean Documentation

PhysLean.Electromagnetism.Wave

Electromagnetic wave equation #

i. Overview #

The first part of this module shows that the electric and magnetic fields of an electromagnetic field in a homogeneous isotropic medium satisfy the wave equation.

The second part shows orthogonality properties of plane waves.

ii. Key results #

iii. Table of contents #

iv. References #

A. The wave equation from Maxwell's equations #

A.1. The electric field of an EM field in free space satisfies the wave equation #

The electromagnetic wave equation for electric field.

A.2. The magnetic field of an EM field in free space satisfies the wave equation #

The electromagnetic wave equation for magnetic field.

B. Orthogonality properties of plane waves #

B.1. Definition of the electric and magnetic plane waves #

An electric plane wave travelling in the direction of s with propagation speed c.

Equations
Instances For

    A magnetic plane wave travelling in the direction of s with propagation speed c.

    Equations
    Instances For

      B.2. Up to a time-dependent constant, the E field is transverse to the direction of propagation #

      theorem Electromagnetism.transverse_upto_time_fun_of_eq_electricPlaneWave (OM : OpticalMedium) {c : } {E₀ : EuclideanSpace (Fin 3)} {s : Space.Direction} {E : ElectricField} {B : MagneticField} (hEwave : E = electricPlaneWave E₀ c s) (h' : Differentiable E₀) (hm : OM.FreeMaxwellEquations E B) :
      ∃ (c : TimeEuclideanSpace (Fin 3)), ∀ (t : Time) (x : Space), inner (E t x) (s.unit 3) = inner (c t) (s.unit 3)

      An electric plane wave minus a constant field is transverse for all x.

      B.3. Up to a time-dependent constant, the B field is transverse to the direction of propagation #

      theorem Electromagnetism.transverse_upto_time_fun_of_eq_magneticPlaneWave (OM : OpticalMedium) {c : } {B₀ : EuclideanSpace (Fin 3)} {s : Space.Direction} {E : ElectricField} {B : MagneticField} (hBwave : B = magneticPlaneWave B₀ c s) (h' : Differentiable B₀) (hm : OM.FreeMaxwellEquations E B) :
      ∃ (c : TimeEuclideanSpace (Fin 3)), ∀ (t : Time) (x : Space), inner (B t x) (s.unit 3) = inner (c t) (s.unit 3)

      An magnetic plane wave minus a constant field is transverse for all x.

      B.4. E proportional to cross of direction of propagation & B, up to a constant #

      B.4.1. Time derivative of E-field proportional to propagation cross time derivative of B-field #

      theorem Electromagnetism.time_deriv_electricPlaneWave_eq_cross_time_deriv_magneticPlaneWave (OM : OpticalMedium) {c : } {t : Time} {x : Space} {B₀ : EuclideanSpace (Fin 3)} {s : Space.Direction} {E : ElectricField} {B : MagneticField} (hc : c = ((OM.μ OM.ε))⁻¹) (hBwave : B = magneticPlaneWave B₀ c s) (h' : Differentiable B₀) (hm : OM.FreeMaxwellEquations E B) :
      Time.deriv (fun (t : Time) => E t x) t = -((OM.μ OM.ε))⁻¹ (fun (a b : WithLp 2 (Fin 3)) => (WithLp.equiv 2 (Fin 3)).symm ((crossProduct ((WithLp.equiv 2 (Fin 3)) a)) ((WithLp.equiv 2 (Fin 3)) b))) (s.unit 3) (Time.deriv (fun (t : Time) => B t x) t)

      The time derivative of a magnetic planewave induces an electric field with time derivative equal to - s ⨯ₑ₃ B'.

      B.4.2. Proportional up to a space-dependent constant #

      theorem Electromagnetism.electricPlaneWave_eq_cross_magneticPlaneWave_upto_space_fun (OM : OpticalMedium) {c : } {B₀ : EuclideanSpace (Fin 3)} {s : Space.Direction} {E : ElectricField} {B : MagneticField} (hc : c = ((OM.μ OM.ε))⁻¹) (hBwave : B = magneticPlaneWave B₀ c s) (h' : Differentiable B₀) (hm : OM.FreeMaxwellEquations E B) (hE : Differentiable E) :
      ∃ (c : SpaceEuclideanSpace (Fin 3)), ∀ (t : Time) (x : Space), E t x = -((OM.μ OM.ε))⁻¹ (fun (a b : WithLp 2 (Fin 3)) => (WithLp.equiv 2 (Fin 3)).symm ((crossProduct ((WithLp.equiv 2 (Fin 3)) a)) ((WithLp.equiv 2 (Fin 3)) b))) (s.unit 3) (B t x) + c x

      A magnetic planewave induces an electric field equal to - s ⨯ₑ₃ B plus a constant field.

      B.4.3. Proportional up to a constant #

      theorem Electromagnetism.electricField_add_cross_magneticField_eq_const_of_planeWave (OM : OpticalMedium) {c : } {s : Space.Direction} {E₀ B₀ : EuclideanSpace (Fin 3)} {E : ElectricField} {B : MagneticField} (hc : c = ((OM.μ OM.ε))⁻¹) (hEwave : E = electricPlaneWave E₀ c s) (hBwave : B = magneticPlaneWave B₀ c s) (hE' : Differentiable E₀) (hB' : Differentiable B₀) (hm : OM.FreeMaxwellEquations E B) :
      ∃ (Ec : EuclideanSpace (Fin 3)), ∀ (t : Time) (x : Space), E t x + ((OM.μ OM.ε))⁻¹ (fun (a b : WithLp 2 (Fin 3)) => (WithLp.equiv 2 (Fin 3)).symm ((crossProduct ((WithLp.equiv 2 (Fin 3)) a)) ((WithLp.equiv 2 (Fin 3)) b))) (s.unit 3) (B t x) = Ec

      E + s ⨯ₑ₃ B is constant for an EMwave.

      B.5. B proportional to cross of direction of propagation & B, up to a constant #

      B.5.1. Time derivative of B-field proportional to propagation cross time derivative of E-field #

      theorem Electromagnetism.time_deriv_magneticPlaneWave_eq_cross_time_deriv_electricPlaneWave (OM : OpticalMedium) {c : } {t : Time} {x : Space} {E₀ : EuclideanSpace (Fin 3)} {s : Space.Direction} {E : ElectricField} {B : MagneticField} (hc : c = ((OM.μ OM.ε))⁻¹) (hEwave : E = electricPlaneWave E₀ c s) (h' : Differentiable E₀) (hm : OM.FreeMaxwellEquations E B) :
      Time.deriv (fun (t : Time) => B t x) t = (OM.μ OM.ε) (fun (a b : WithLp 2 (Fin 3)) => (WithLp.equiv 2 (Fin 3)).symm ((crossProduct ((WithLp.equiv 2 (Fin 3)) a)) ((WithLp.equiv 2 (Fin 3)) b))) (s.unit 3) (Time.deriv (fun (t : Time) => E t x) t)

      The time derivative of an electric planewave induces a magnetic field with time derivative equal to s ⨯ₑ₃ E'.

      B.5.2. Proportional up to a space-dependent constant #

      theorem Electromagnetism.magneticPlaneWave_eq_cross_electricPlaneWave_upto_space_fun (OM : OpticalMedium) {c : } {E₀ : EuclideanSpace (Fin 3)} {s : Space.Direction} {E : ElectricField} {B : MagneticField} (hc : c = ((OM.μ OM.ε))⁻¹) (hEwave : E = electricPlaneWave E₀ c s) (h' : Differentiable E₀) (hm : OM.FreeMaxwellEquations E B) (hB : Differentiable B) :
      ∃ (c : SpaceEuclideanSpace (Fin 3)), ∀ (t : Time) (x : Space), B t x = (OM.μ OM.ε) (fun (a b : WithLp 2 (Fin 3)) => (WithLp.equiv 2 (Fin 3)).symm ((crossProduct ((WithLp.equiv 2 (Fin 3)) a)) ((WithLp.equiv 2 (Fin 3)) b))) (s.unit 3) (E t x) + c x

      An electric planewave induces an magnetic field equal to s ×₃ E plus a constant field.

      B.5.3. Proportional up to a constant #

      theorem Electromagnetism.magneticField_sub_cross_electricField_eq_const_of_planeWave (OM : OpticalMedium) {c : } {s : Space.Direction} {E₀ B₀ : EuclideanSpace (Fin 3)} {E : ElectricField} {B : MagneticField} (hc : c = ((OM.μ OM.ε))⁻¹) (hEwave : E = electricPlaneWave E₀ c s) (hBwave : B = magneticPlaneWave B₀ c s) (hE' : Differentiable E₀) (hB' : Differentiable B₀) (hm : OM.FreeMaxwellEquations E B) :
      ∃ (Ec : EuclideanSpace (Fin 3)), ∀ (t : Time) (x : Space), B t x - (OM.μ OM.ε) (fun (a b : WithLp 2 (Fin 3)) => (WithLp.equiv 2 (Fin 3)).symm ((crossProduct ((WithLp.equiv 2 (Fin 3)) a)) ((WithLp.equiv 2 (Fin 3)) b))) (s.unit 3) (E t x) = Ec

      B - s ⨯ₑ₃ E is constant for an EMwave.

      B.6. E-field orthogonal to direction of propagation up to a constant #

      theorem Electromagnetism.electricField_transverse_upto_const_of_EMwave (OM : OpticalMedium) {c : } {s : Space.Direction} {E₀ B₀ : EuclideanSpace (Fin 3)} {E : ElectricField} {B : MagneticField} (hc : c = ((OM.μ OM.ε))⁻¹) (hEwave : E = electricPlaneWave E₀ c s) (hBwave : B = magneticPlaneWave B₀ c s) (hE' : Differentiable E₀) (hB' : Differentiable B₀) (hm : OM.FreeMaxwellEquations E B) :
      ∃ (c : EuclideanSpace (Fin 3)), ∀ (t : Time) (x : Space), inner (E t x - c) (s.unit 3) = 0

      The electric field of an EMwave minus a constant field is transverse.

      B.7. B-field orthogonal to direction of propagation up to a constant #

      theorem Electromagnetism.magneticField_transverse_upto_const_of_EMwave (OM : OpticalMedium) {c : } {s : Space.Direction} {E₀ B₀ : EuclideanSpace (Fin 3)} {E : ElectricField} {B : MagneticField} (hc : c = ((OM.μ OM.ε))⁻¹) (hEwave : E = electricPlaneWave E₀ c s) (hBwave : B = magneticPlaneWave B₀ c s) (hE' : Differentiable E₀) (hB' : Differentiable B₀) (hm : OM.FreeMaxwellEquations E B) :
      ∃ (c : EuclideanSpace (Fin 3)), ∀ (t : Time) (x : Space), inner (B t x - c) (s.unit 3) = 0

      The magnetic field of an EMwave minus a constant field is transverse.

      B.8. E, B and direction of propagation form an orthonormal triad up to constants #

      theorem Electromagnetism.orthonormal_triad_of_electromagneticplaneWave (OM : OpticalMedium) {c : } {s : Space.Direction} {E₀ B₀ : EuclideanSpace (Fin 3)} {E : ElectricField} {B : MagneticField} (hc : c = ((OM.μ OM.ε))⁻¹) (hEwave : E = electricPlaneWave E₀ c s) (hBwave : B = magneticPlaneWave B₀ c s) (hE' : Differentiable E₀) (hB' : Differentiable B₀) (hm : OM.FreeMaxwellEquations E B) :
      ∃ (Ep : EuclideanSpace (Fin 3)) (Bp : EuclideanSpace (Fin 3)), ∀ (t : Time) (x : Space), E t x - Ep 0 B t x - Bp 0Orthonormal ![E t x - Ep⁻¹ (E t x - Ep), B t x - Bp⁻¹ (B t x - Bp), s.unit 3]

      Unit vectors in the direction of B, E and s form an orthonormal triad for an EMwave after subtracting the appropriate constant fields.