Vector identities #
i. Overview #
In this module we prove properties of the gradient, divergence, and curl operators. We show that on differentiable functions they are linear, show their action on basic functions, and prove vector calculus identities
ii. Key results #
grad_inner_space_unit_vector: The gradient in the direction of the space position.curl_of_curl:∇ × (∇ × f) = ∇ (∇ ⬝ f) - Δ fdiv_of_curl_eq_zero:∇ ⬝ (∇ × f) = 0
iii. Table of contents #
- A. Basic lemmas about derivatives of space
- A.1. Derivative distributes over addition
- A.2. Derivative distributes over scalar multiplication
- A.3. Two spatial derivatives commute
- A.4. Derivative of a component
- A.5. Derivative of a component squared
- A.6. Derivative of a norm squared
- A.6.1. Differentiability of the norm squared function
- A.6.2. Derivative of the norm squared function
- A.7. Derivative of the inner product
- A.7.1. Differentiability of the inner product function
- A.7.2. Derivative of the inner product function
- B. Properties of the gradient operator
- B.1. Gradient of the zero function
- B.2. Gradient distributes over addition
- B.3. Gradient of a constant function
- B.4. Gradient distributes over scalar multiplication
- B.5. Gradient distributes over negation
- B.6. Expansion in terms of basis vectors
- B.7. Components of the gradient
- B.8. Inner product with a gradient
- B.9. Gradient is equal to
gradientfrom Mathlib - B.10. Value of gradient in the direction of the position vector
- B.11. Gradient of the norm squared function
- B.12. Gradient of the inner product function
- C. Properties of the curl operator
- C.1. The curl on the zero function
- C.2. The curl on a constant function
- C.3. The curl distributes over addition
- C.4. The curl distributes over scalar multiplication
- C.5. The curl of a linear map is a linear map
- C.6. Preliminary lemmas about second derivatives
- C.7. The div of a curl is zero
- C.8. The curl of a curl
- D. Properties of the divergence operator
- D.1. The divergence on the zero function
- D.2. The divergence on a constant function
- D.3. The divergence distributes over addition
- D.4. The divergence distributes over scalar multiplication
- D.5. The divergence of a linear map is a linear map
- E. Properties of the Laplacian operator
iv. References #
A. Basic lemmas about derivatives of space #
A.1. Derivative distributes over addition #
theorem
Space.deriv_add
{M : Type u_1}
{d : ℕ}
{u : Fin d}
[NormedAddCommGroup M]
[NormedSpace ℝ M]
(f1 f2 : Space d → M)
(hf1 : Differentiable ℝ f1)
(hf2 : Differentiable ℝ f2)
:
Derivatives on space distribute over addition.
theorem
Space.deriv_coord_add
{d : ℕ}
{u i : Fin d}
(f1 f2 : Space d → EuclideanSpace ℝ (Fin d))
(hf1 : Differentiable ℝ f1)
(hf2 : Differentiable ℝ f2)
:
Derivatives on space distribute coordinate-wise over addition.
A.2. Derivative distributes over scalar multiplication #
theorem
Space.deriv_smul
{M : Type u_1}
{d : ℕ}
{u : Fin d}
[NormedAddCommGroup M]
[NormedSpace ℝ M]
(f : Space d → M)
(k : ℝ)
(hf : Differentiable ℝ f)
:
Scalar multiplication on space derivatives.
A.3. Two spatial derivatives commute #
A.4. Derivative of a component #
A.5. Derivative of a component squared #
A.6. Derivative of a norm squared #
A.6.1. Differentiability of the norm squared function #
A.6.2. Derivative of the norm squared function #
A.7. Derivative of the inner product #
A.7.1. Differentiability of the inner product function #
The inner product is differentiable.
A.7.2. Derivative of the inner product function #
B. Properties of the gradient operator #
B.1. Gradient of the zero function #
B.2. Gradient distributes over addition #
theorem
Space.grad_add
{d : ℕ}
(f1 f2 : Space d → ℝ)
(hf1 : Differentiable ℝ f1)
(hf2 : Differentiable ℝ f2)
:
B.3. Gradient of a constant function #
B.4. Gradient distributes over scalar multiplication #
B.5. Gradient distributes over negation #
B.6. Expansion in terms of basis vectors #
B.7. Components of the gradient #
B.8. Inner product with a gradient #
B.10. Value of gradient in the direction of the position vector #
B.11. Gradient of the norm squared function #
B.12. Gradient of the inner product function #
C. Properties of the curl operator #
C.1. The curl on the zero function #
C.2. The curl on a constant function #
@[simp]
C.3. The curl distributes over addition #
theorem
Space.curl_add
(f1 f2 : Space → EuclideanSpace ℝ (Fin 3))
(hf1 : Differentiable ℝ f1)
(hf2 : Differentiable ℝ f2)
:
C.4. The curl distributes over scalar multiplication #
C.5. The curl of a linear map is a linear map #
theorem
Space.curl_linear_map
{W : Type u_1}
[NormedAddCommGroup W]
[NormedSpace ℝ W]
(f : W → Space → EuclideanSpace ℝ (Fin 3))
(hf : ∀ (w : W), Differentiable ℝ (f w))
(hf' : IsLinearMap ℝ f)
:
IsLinearMap ℝ fun (w : W) => curl (f w)
C.6. Preliminary lemmas about second derivatives #
theorem
Space.deriv_coord_2nd_add
{i u v w : Fin 3}
(f : Space → EuclideanSpace ℝ (Fin 3))
(hf : ContDiff ℝ 2 f)
:
Second derivatives distribute coordinate-wise over addition (all three components for div).
theorem
Space.deriv_coord_2nd_sub
{u v w : Fin 3}
(f : Space → EuclideanSpace ℝ (Fin 3))
(hf : ContDiff ℝ 2 f)
:
Second derivatives distribute coordinate-wise over subtraction (two components for curl).
C.7. The div of a curl is zero #
C.8. The curl of a curl #
D. Properties of the divergence operator #
D.1. The divergence on the zero function #
D.2. The divergence on a constant function #
@[simp]
D.3. The divergence distributes over addition #
theorem
Space.div_add
{d : ℕ}
(f1 f2 : Space d → EuclideanSpace ℝ (Fin d))
(hf1 : Differentiable ℝ f1)
(hf2 : Differentiable ℝ f2)
:
D.4. The divergence distributes over scalar multiplication #
theorem
Space.div_smul
{d : ℕ}
(f : Space d → EuclideanSpace ℝ (Fin d))
(k : ℝ)
(hf : Differentiable ℝ f)
:
D.5. The divergence of a linear map is a linear map #
theorem
Space.div_linear_map
{W : Type u_1}
[NormedAddCommGroup W]
[NormedSpace ℝ W]
(f : W → Space → EuclideanSpace ℝ (Fin 3))
(hf : ∀ (w : W), Differentiable ℝ (f w))
(hf' : IsLinearMap ℝ f)
:
IsLinearMap ℝ fun (w : W) => div (f w)