Harmonic Wave in Vacuum #
i. Overview #
In this module we define the electromagnetic potential for a monochromatic harmonic wave travelling in the x-direction in free space, and prove various properties about it, including that it satisfies Maxwell's equations in free space, that it is a plane wave.
We work here in a general dimension d so we use the magnetic field is the
form of a matrix rather than a vector.
ii. Key results #
harmonicWaveX: Definition of the electromagnetic potential for a harmonic wave travelling in the x-direction.harmonicWaveX_isExtrema: The harmonic wave satisfies Maxwell's equations in free space.harmonicWaveX_isPlaneWave: The harmonic wave is a plane wave.harmonicWaveX_polarization_ellipse: The polarization ellipse equation for the harmonic wave.
iii. Table of contents #
- A. The electromagnetic potential for a harmonic wave
- A.1. Differentiability of the electromagnetic potential
- A.2. Smoothness of the electromagnetic potential
- B. The scalar potential
- C. The vector potential
- C.1. Components of the vector potential
- C.2. Space derivatives of the vector potential
- D. The electric field
- D.1. Components of the electric field
- D.2. Spatial derivatives of the electric field
- D.3. Time derivatives of the electric field
- D.4. Divergence of the electric field
- E. The magnetic field matrix for a harmonic wave
- E.1. Components of the magnetic field matrix
- E.2. Space derivatives of the magnetic field matrix
- F. Maxwell's equations for a harmonic wave
- G. The harmonic wave is a plane wave
- H. Polarization ellipse of the harmonic wave
iv. References #
A. The electromagnetic potential for a harmonic wave #
noncomputable def
Electromagnetism.ElectromagneticPotential.harmonicWaveX
{d : ā}
(š : FreeSpace)
(k : ā)
(Eā Ļ : Fin d ā ā)
:
The electromagnetic potential for a Harmonic wave travelling in the x-direction
with wave number k.
Equations
- One or more equations did not get rendered due to their size.
- Electromagnetism.ElectromagneticPotential.harmonicWaveX š k Eā Ļ x (Sum.inl 0) = 0
- Electromagnetism.ElectromagneticPotential.harmonicWaveX š k Eā Ļ x (Sum.inr āØ0, āÆā©) = 0
Instances For
A.1. Differentiability of the electromagnetic potential #
theorem
Electromagnetism.ElectromagneticPotential.harmonicWaveX_differentiable
{d : ā}
(š : FreeSpace)
(k : ā)
(Eā Ļ : Fin d ā ā)
:
Differentiable ā (harmonicWaveX š k Eā Ļ)
A.2. Smoothness of the electromagnetic potential #
B. The scalar potential #
The scalar potential of the harmonic wave is zero.
C. The vector potential #
C.1. Components of the vector potential #
C.2. Space derivatives of the vector potential #
@[simp]
theorem
Electromagnetism.ElectromagneticPotential.harmonicWaveX_vectorPotential_space_deriv_succ
{d : ā}
(š : FreeSpace)
(k : ā)
(Eā Ļ : Fin d ā ā)
(t : Time)
(x : Space d.succ)
(j : Fin d)
(i : Fin d.succ)
:
Space.deriv j.succ (fun (x : Space (d + 1)) => (vectorPotential š.c (harmonicWaveX š k Eā Ļ) t x).ofLp i) x = 0
D. The electric field #
D.1. Components of the electric field #
D.2. Spatial derivatives of the electric field #
theorem
Electromagnetism.ElectromagneticPotential.harmonicWaveX_electricField_space_deriv_same
{d : ā}
(š : FreeSpace)
(k : ā)
(hk : k ā 0)
(Eā Ļ : Fin d ā ā)
(t : Time)
(x : Space d.succ)
(i : Fin d.succ)
:
Space.deriv i (fun (x : Space d.succ) => (electricField š.c (harmonicWaveX š k Eā Ļ) t x).ofLp i) x = 0
D.3. Time derivatives of the electric field #
D.4. Divergence of the electric field #
@[simp]
E. The magnetic field matrix for a harmonic wave #
E.1. Components of the magnetic field matrix #
@[simp]
E.2. Space derivatives of the magnetic field matrix #
theorem
Electromagnetism.ElectromagneticPotential.harmonicWaveX_magneticFieldMatrix_space_deriv_succ
{d : ā}
(š : FreeSpace)
(k : ā)
(hk : k ā 0)
(Eā Ļ : Fin d ā ā)
(t : Time)
(x : Space d.succ)
(i j : Fin d.succ)
(l : Fin d)
:
Space.deriv l.succ (fun (x : Space (d + 1)) => magneticFieldMatrix š.c (harmonicWaveX š k Eā Ļ) t x (i, j)) x = 0
F. Maxwell's equations for a harmonic wave #
theorem
Electromagnetism.ElectromagneticPotential.harmonicWaveX_isExtrema
{d : ā}
(š : FreeSpace)
(k : ā)
(hk : k ā 0)
(Eā Ļ : Fin d ā ā)
:
IsExtrema š (harmonicWaveX š k Eā Ļ) 0
G. The harmonic wave is a plane wave #
theorem
Electromagnetism.ElectromagneticPotential.harmonicWaveX_isPlaneWave
{d : ā}
(š : FreeSpace)
(k : ā)
(hk : k ā 0)
(Eā Ļ : Fin d ā ā)
:
IsPlaneWave š (harmonicWaveX š k Eā Ļ) { unit := Space.basis 0, norm := ⯠}
H. Polarization ellipse of the harmonic wave #
theorem
Electromagnetism.ElectromagneticPotential.harmonicWaveX_polarization_ellipse
{d : ā}
(š : FreeSpace)
(k : ā)
(hk : k ā 0)
(Eā Ļ : Fin d ā ā)
(t : Time)
(x : Space d.succ)
(hi : ā (i : Fin d), Eā i ā 0)
:
2 * ād * ā i : Fin d, ((electricField š.c (harmonicWaveX š k Eā Ļ) t x).ofLp i.succ / Eā i) ^ 2 - 2 * ā i : Fin d,
ā j : Fin d,
(electricField š.c (harmonicWaveX š k Eā Ļ) t x).ofLp i.succ / Eā i * ((electricField š.c (harmonicWaveX š k Eā Ļ) t x).ofLp j.succ / Eā j) * Real.cos (Ļ j - Ļ i) = ā i : Fin d, ā j : Fin d, Real.sin (Ļ j - Ļ i) ^ 2