PhysLean Documentation

PhysLean.Electromagnetism.Vacuum.HarmonicWave

Harmonic Wave in Vacuum #

i. Overview #

In this module we define the electromagnetic potential for a monochromatic harmonic wave travelling in the x-direction in free space, and prove various properties about it, including that it satisfies Maxwell's equations in free space, that it is a plane wave.

We work here in a general dimension d so we use the magnetic field is the form of a matrix rather than a vector.

ii. Key results #

iii. Table of contents #

iv. References #

A. The electromagnetic potential for a harmonic wave #

noncomputable def Electromagnetism.ElectromagneticPotential.harmonicWaveX {d : ā„•} (š“• : FreeSpace) (k : ā„) (Eā‚€ φ : Fin d → ā„) :

The electromagnetic potential for a Harmonic wave travelling in the x-direction with wave number k.

Equations
Instances For

    A.1. Differentiability of the electromagnetic potential #

    theorem Electromagnetism.ElectromagneticPotential.harmonicWaveX_differentiable {d : ā„•} (š“• : FreeSpace) (k : ā„) (Eā‚€ φ : Fin d → ā„) :
    Differentiable ā„ (harmonicWaveX š“• k Eā‚€ φ)

    A.2. Smoothness of the electromagnetic potential #

    theorem Electromagnetism.ElectromagneticPotential.harmonicWaveX_contDiff {d : ā„•} (n : WithTop ā„•āˆž) (š“• : FreeSpace) (k : ā„) (Eā‚€ φ : Fin d → ā„) :
    ContDiff ā„ n (harmonicWaveX š“• k Eā‚€ φ)

    B. The scalar potential #

    The scalar potential of the harmonic wave is zero.

    @[simp]
    theorem Electromagnetism.ElectromagneticPotential.harmonicWaveX_scalarPotential_eq_zero {d : ā„•} (š“• : FreeSpace) (k : ā„) (Eā‚€ φ : Fin d → ā„) :
    scalarPotential š“•.c (harmonicWaveX š“• k Eā‚€ φ) = 0

    C. The vector potential #

    C.1. Components of the vector potential #

    @[simp]
    theorem Electromagnetism.ElectromagneticPotential.harmonicWaveX_vectorPotential_zero_eq_zero {d : ā„•} (š“• : FreeSpace) (k : ā„) (Eā‚€ φ : Fin d → ā„) (t : Time) (x : Space d.succ) :
    (vectorPotential š“•.c (harmonicWaveX š“• k Eā‚€ φ) t x).ofLp 0 = 0
    theorem Electromagnetism.ElectromagneticPotential.harmonicWaveX_vectorPotential_succ {d : ā„•} (š“• : FreeSpace) (k : ā„) (Eā‚€ φ : Fin d → ā„) (t : Time) (x : Space d.succ) (i : Fin d) :
    (vectorPotential š“•.c (harmonicWaveX š“• k Eā‚€ φ) t x).ofLp i.succ = -Eā‚€ i * 1 / (š“•.c.val * k) * Real.sin (k * (t.val * š“•.c.val - x.val 0) + φ i)
    theorem Electromagnetism.ElectromagneticPotential.harmonicWaveX_vectorPotential_succ' {d : ā„•} (š“• : FreeSpace) (k : ā„) (Eā‚€ φ : Fin d → ā„) (t : Time) (x : Space d.succ) (i : ā„•) (hi : i.succ < d.succ) :
    (vectorPotential š“•.c (harmonicWaveX š“• k Eā‚€ φ) t x).ofLp ⟨i.succ, hi⟩ = -Eā‚€ ⟨i, ā‹ÆāŸ© * 1 / (š“•.c.val * k) * Real.sin (k * (t.val * š“•.c.val - x.val 0) + φ ⟨i, ā‹ÆāŸ©)

    C.2. Space derivatives of the vector potential #

    @[simp]
    theorem Electromagnetism.ElectromagneticPotential.harmonicWaveX_vectorPotential_space_deriv_succ {d : ā„•} (š“• : FreeSpace) (k : ā„) (Eā‚€ φ : Fin d → ā„) (t : Time) (x : Space d.succ) (j : Fin d) (i : Fin d.succ) :
    Space.deriv j.succ (fun (x : Space (d + 1)) => (vectorPotential š“•.c (harmonicWaveX š“• k Eā‚€ φ) t x).ofLp i) x = 0
    @[simp]
    theorem Electromagnetism.ElectromagneticPotential.harmonicWaveX_vectorPotential_succ_space_deriv_zero {d : ā„•} (š“• : FreeSpace) (k : ā„) (hk : k ≠ 0) (Eā‚€ φ : Fin d → ā„) (t : Time) (x : Space d.succ) (i : Fin d) :
    Space.deriv 0 (fun (x : Space d.succ) => (vectorPotential š“•.c (harmonicWaveX š“• k Eā‚€ φ) t x).ofLp i.succ) x = Eā‚€ i / š“•.c.val * Real.cos (š“•.c.val * k * t.val - k * x.val 0 + φ i)

    D. The electric field #

    D.1. Components of the electric field #

    theorem Electromagnetism.ElectromagneticPotential.harmonicWaveX_electricField_zero {d : ā„•} (š“• : FreeSpace) (k : ā„) (Eā‚€ φ : Fin d → ā„) (t : Time) (x : Space d.succ) :
    (electricField š“•.c (harmonicWaveX š“• k Eā‚€ φ) t x).ofLp 0 = 0
    theorem Electromagnetism.ElectromagneticPotential.harmonicWaveX_electricField_succ {d : ā„•} (š“• : FreeSpace) (k : ā„) (hk : k ≠ 0) (Eā‚€ φ : Fin d → ā„) (t : Time) (x : Space d.succ) (i : Fin d) :
    (electricField š“•.c (harmonicWaveX š“• k Eā‚€ φ) t x).ofLp i.succ = Eā‚€ i * Real.cos (k * š“•.c.val * t.val - k * x.val 0 + φ i)

    D.2. Spatial derivatives of the electric field #

    theorem Electromagnetism.ElectromagneticPotential.harmonicWaveX_electricField_space_deriv_same {d : ā„•} (š“• : FreeSpace) (k : ā„) (hk : k ≠ 0) (Eā‚€ φ : Fin d → ā„) (t : Time) (x : Space d.succ) (i : Fin d.succ) :
    Space.deriv i (fun (x : Space d.succ) => (electricField š“•.c (harmonicWaveX š“• k Eā‚€ φ) t x).ofLp i) x = 0

    D.3. Time derivatives of the electric field #

    theorem Electromagnetism.ElectromagneticPotential.harmonicWaveX_electricField_succ_time_deriv {d : ā„•} (š“• : FreeSpace) (k : ā„) (hk : k ≠ 0) (Eā‚€ φ : Fin d → ā„) (t : Time) (x : Space d.succ) (i : Fin d) :
    Time.deriv (fun (t : Time) => (electricField š“•.c (harmonicWaveX š“• k Eā‚€ φ) t x).ofLp i.succ) t = -k * š“•.c.val * Eā‚€ i * Real.sin (k * š“•.c.val * t.val - k * x.val 0 + φ i)

    D.4. Divergence of the electric field #

    @[simp]
    theorem Electromagnetism.ElectromagneticPotential.harmonicWaveX_div_electricField_eq_zero {d : ā„•} (š“• : FreeSpace) (k : ā„) (hk : k ≠ 0) (Eā‚€ φ : Fin d → ā„) (t : Time) (x : Space d.succ) :
    Space.div (fun (x : Space d.succ) => electricField š“•.c (harmonicWaveX š“• k Eā‚€ φ) t x) x = 0

    E. The magnetic field matrix for a harmonic wave #

    E.1. Components of the magnetic field matrix #

    @[simp]
    theorem Electromagnetism.ElectromagneticPotential.harmonicWaveX_magneticFieldMatrix_succ_succ {d : ā„•} (š“• : FreeSpace) (k : ā„) (Eā‚€ φ : Fin d → ā„) (t : Time) (x : Space d.succ) (i j : Fin d) :
    magneticFieldMatrix š“•.c (harmonicWaveX š“• k Eā‚€ φ) t x (i.succ, j.succ) = 0
    theorem Electromagnetism.ElectromagneticPotential.harmonicWaveX_magneticFieldMatrix_zero_succ {d : ā„•} (š“• : FreeSpace) (k : ā„) (hk : k ≠ 0) (Eā‚€ φ : Fin d → ā„) (t : Time) (x : Space d.succ) (i : Fin d) :
    magneticFieldMatrix š“•.c (harmonicWaveX š“• k Eā‚€ φ) t x (0, i.succ) = -Eā‚€ i / š“•.c.val * Real.cos (š“•.c.val * k * t.val - k * x.val 0 + φ i)
    theorem Electromagnetism.ElectromagneticPotential.harmonicWaveX_magneticFieldMatrix_succ_zero {d : ā„•} (š“• : FreeSpace) (k : ā„) (hk : k ≠ 0) (Eā‚€ φ : Fin d → ā„) (t : Time) (x : Space d.succ) (i : Fin d) :
    magneticFieldMatrix š“•.c (harmonicWaveX š“• k Eā‚€ φ) t x (i.succ, 0) = Eā‚€ i / š“•.c.val * Real.cos (š“•.c.val * k * t.val - k * x.val 0 + φ i)

    E.2. Space derivatives of the magnetic field matrix #

    theorem Electromagnetism.ElectromagneticPotential.harmonicWaveX_magneticFieldMatrix_space_deriv_succ {d : ā„•} (š“• : FreeSpace) (k : ā„) (hk : k ≠ 0) (Eā‚€ φ : Fin d → ā„) (t : Time) (x : Space d.succ) (i j : Fin d.succ) (l : Fin d) :
    Space.deriv l.succ (fun (x : Space (d + 1)) => magneticFieldMatrix š“•.c (harmonicWaveX š“• k Eā‚€ φ) t x (i, j)) x = 0
    theorem Electromagnetism.ElectromagneticPotential.harmonicWaveX_magneticFieldMatrix_zero_succ_space_deriv_zero {d : ā„•} (š“• : FreeSpace) (k : ā„) (hk : k ≠ 0) (Eā‚€ φ : Fin d → ā„) (t : Time) (x : Space d.succ) (i : Fin d) :
    Space.deriv 0 (fun (x : Space d.succ) => magneticFieldMatrix š“•.c (harmonicWaveX š“• k Eā‚€ φ) t x (0, i.succ)) x = -Eā‚€ i * k / š“•.c.val * Real.sin (š“•.c.val * k * t.val - k * x.val 0 + φ i)

    F. Maxwell's equations for a harmonic wave #

    theorem Electromagnetism.ElectromagneticPotential.harmonicWaveX_isExtrema {d : ā„•} (š“• : FreeSpace) (k : ā„) (hk : k ≠ 0) (Eā‚€ φ : Fin d → ā„) :
    IsExtrema š“• (harmonicWaveX š“• k Eā‚€ φ) 0

    G. The harmonic wave is a plane wave #

    theorem Electromagnetism.ElectromagneticPotential.harmonicWaveX_isPlaneWave {d : ā„•} (š“• : FreeSpace) (k : ā„) (hk : k ≠ 0) (Eā‚€ φ : Fin d → ā„) :
    IsPlaneWave š“• (harmonicWaveX š“• k Eā‚€ φ) { unit := Space.basis 0, norm := ⋯ }

    H. Polarization ellipse of the harmonic wave #

    theorem Electromagnetism.ElectromagneticPotential.harmonicWaveX_polarization_ellipse {d : ā„•} (š“• : FreeSpace) (k : ā„) (hk : k ≠ 0) (Eā‚€ φ : Fin d → ā„) (t : Time) (x : Space d.succ) (hi : āˆ€ (i : Fin d), Eā‚€ i ≠ 0) :
    2 * ↑d * āˆ‘ i : Fin d, ((electricField š“•.c (harmonicWaveX š“• k Eā‚€ φ) t x).ofLp i.succ / Eā‚€ i) ^ 2 - 2 * āˆ‘ i : Fin d, āˆ‘ j : Fin d, (electricField š“•.c (harmonicWaveX š“• k Eā‚€ φ) t x).ofLp i.succ / Eā‚€ i * ((electricField š“•.c (harmonicWaveX š“• k Eā‚€ φ) t x).ofLp j.succ / Eā‚€ j) * Real.cos (φ j - φ i) = āˆ‘ i : Fin d, āˆ‘ j : Fin d, Real.sin (φ j - φ i) ^ 2