Electromagnetic wave equation #
i. Overview #
In this module we define a proposition IsPlaneWave on electromagnetic potentials
which is true if the potential corresponds to a plane wave.
From this we derive various properties of plane waves including
the orthogonality of the electric field, magnetic field and direction of propagation,
in general dimensions.
ii. Key results #
IsPlaneWave: The proposition defining plane waves.IsPlaneWave.electricFunction: The electric function corresponding to a plane wave.IsPlaneWave.magneticFunction: The magnetic function corresponding to a plane wave.IsPlaneWave.magneticFieldMatrix_eq_propogator_cross_electricField: The magnetic field expressed in terms of the electric field and direction of propagation.IsPlaneWave.electricField_eq_propogator_cross_magneticFieldMatrix: The electric field expressed in terms of the magnetic field and direction of propagation.
iii. Table of contents #
- A. The property of being a plane wave
- A.1. The electric and magnetic functions from a plane wave
- A.1.1. Electric function and magnetic function in terms of E and B fields
- A.1.2. Uniquness of the electric function
- A.1.3. Uniquness of the magnetic function
- A.2. Differentiability conditions
- A.3. Time derivative of electric and magnetic fields of a plane wave
- A.4. Space derivative of electric and magnetic fields of a plane wave
- A.5. Space derivative in terms of time derivative
- A.1. The electric and magnetic functions from a plane wave
- B. The magnetic field in terms of the electric field
- B.1. Time derivative of the magnetic field in terms of electric field
- B.2. Space derivative of the magnetic field in terms of electric field
- B.3. Magnetic field equal propogator cross electric field up to constant
- C. The electric field in terms of the magnetic field
- C.1. The time derivative of the electric field in terms of magnetic field
- C.2. The space derivative of the electric field in terms of magnetic field
- C.3. Electric field equal propogator cross magnetic field up to constant
iv. References #
A. The property of being a plane wave #
def
Electromagnetism.ElectromagneticPotential.IsPlaneWave
{d : β}
(π : FreeSpace)
(A : ElectromagneticPotential d)
(s : Space.Direction d)
:
The proposition on a electromagnetic potential which is true if it corresponds to a plane wave.
Equations
- One or more equations did not get rendered due to their size.
Instances For
A.1. The electric and magnetic functions from a plane wave #
noncomputable def
Electromagnetism.ElectromagneticPotential.IsPlaneWave.electricFunction
{d : β}
{π : FreeSpace}
{A : ElectromagneticPotential d}
{s : Space.Direction d}
(hA : IsPlaneWave π A s)
:
β β EuclideanSpace β (Fin d)
The corresponding electric field function from β to EuclideanSpace β (Fin d)
of a plane wave.
Equations
- hA.electricFunction = Classical.choose β―
Instances For
theorem
Electromagnetism.ElectromagneticPotential.IsPlaneWave.electricField_eq_electricFunction
{d : β}
{π : FreeSpace}
{A : ElectromagneticPotential d}
{s : Space.Direction d}
(P : IsPlaneWave π A s)
(t : Time)
(x : Space d)
:
noncomputable def
Electromagnetism.ElectromagneticPotential.IsPlaneWave.magneticFunction
{d : β}
{π : FreeSpace}
{A : ElectromagneticPotential d}
{s : Space.Direction d}
(hA : IsPlaneWave π A s)
:
The corresponding magnetic field function from β to
Fin d Γ Fin d β β of a plane wave.
Equations
- hA.magneticFunction = Classical.choose β―
Instances For
theorem
Electromagnetism.ElectromagneticPotential.IsPlaneWave.magneticFieldMatrix_eq_magneticFunction
{d : β}
{π : FreeSpace}
{A : ElectromagneticPotential d}
{s : Space.Direction d}
(P : IsPlaneWave π A s)
(t : Time)
(x : Space d)
:
A.1.1. Electric function and magnetic function in terms of E and B fields #
theorem
Electromagnetism.ElectromagneticPotential.IsPlaneWave.electricFunction_eq_electricField
{d : β}
{π : FreeSpace}
{A : ElectromagneticPotential d}
{s : Space.Direction d}
(P : IsPlaneWave π A s)
:
theorem
Electromagnetism.ElectromagneticPotential.IsPlaneWave.magneticFunction_eq_magneticFieldMatrix
{d : β}
{π : FreeSpace}
{A : ElectromagneticPotential d}
{s : Space.Direction d}
(P : IsPlaneWave π A s)
:
A.1.2. Uniquness of the electric function #
theorem
Electromagnetism.ElectromagneticPotential.IsPlaneWave.electricFunction_unique
{d : β}
{π : FreeSpace}
{A : ElectromagneticPotential d}
{s : Space.Direction d}
(P : IsPlaneWave π A s)
(E1 : β β EuclideanSpace β (Fin d))
(hEβ : electricField π.c A = ClassicalMechanics.planeWave E1 π.c.val s)
:
A.1.3. Uniquness of the magnetic function #
theorem
Electromagnetism.ElectromagneticPotential.IsPlaneWave.magneticFunction_unique
{d : β}
{π : FreeSpace}
{A : ElectromagneticPotential d}
{s : Space.Direction d}
(P : IsPlaneWave π A s)
(B1 : β β Fin d Γ Fin d β β)
(hBβ : β (t : Time) (x : Space d), magneticFieldMatrix π.c A t x = B1 (inner β x s.unit - π.c.val * t.val))
:
A.2. Differentiability conditions #
theorem
Electromagnetism.ElectromagneticPotential.IsPlaneWave.electricFunction_differentiable
{d : β}
{π : FreeSpace}
{A : ElectromagneticPotential d}
{s : Space.Direction d}
(P : IsPlaneWave π A s)
(hA : ContDiff β 2 A)
:
theorem
Electromagnetism.ElectromagneticPotential.IsPlaneWave.magneticFunction_differentiable
{d : β}
{π : FreeSpace}
{A : ElectromagneticPotential d}
{s : Space.Direction d}
(P : IsPlaneWave π A s)
(hA : ContDiff β 2 A)
(ij : Fin d Γ Fin d)
:
Differentiable β fun (u : β) => P.magneticFunction u ij
A.3. Time derivative of electric and magnetic fields of a plane wave #
theorem
Electromagnetism.ElectromagneticPotential.IsPlaneWave.electricField_time_deriv
{d : β}
{π : FreeSpace}
{A : ElectromagneticPotential d}
{s : Space.Direction d}
(P : IsPlaneWave π A s)
(hA : ContDiff β 2 A)
(t : Time)
(x : Space d)
:
theorem
Electromagnetism.ElectromagneticPotential.IsPlaneWave.magneticFieldMatrix_time_deriv
{d : β}
{π : FreeSpace}
{A : ElectromagneticPotential d}
{s : Space.Direction d}
(P : IsPlaneWave π A s)
(hA : ContDiff β 2 A)
(t : Time)
(x : Space d)
(i j : Fin d)
:
A.4. Space derivative of electric and magnetic fields of a plane wave #
theorem
Electromagnetism.ElectromagneticPotential.IsPlaneWave.electricField_space_deriv
{d : β}
{π : FreeSpace}
{A : ElectromagneticPotential d}
{s : Space.Direction d}
(P : IsPlaneWave π A s)
(hA : ContDiff β 2 A)
(t : Time)
(x : Space d)
(i : Fin d)
:
theorem
Electromagnetism.ElectromagneticPotential.IsPlaneWave.magneticFieldMatrix_space_deriv
{d : β}
{π : FreeSpace}
{A : ElectromagneticPotential d}
{s : Space.Direction d}
(P : IsPlaneWave π A s)
(hA : ContDiff β 2 A)
(t : Time)
(x : Space d)
(i j k : Fin d)
:
A.5. Space derivative in terms of time derivative #
theorem
Electromagnetism.ElectromagneticPotential.IsPlaneWave.electricField_space_deriv_eq_time_deriv
{d : β}
{π : FreeSpace}
{A : ElectromagneticPotential d}
{s : Space.Direction d}
(P : IsPlaneWave π A s)
(hA : ContDiff β 2 A)
(t : Time)
(x : Space d)
(i k : Fin d)
:
Space.deriv k (fun (x : Space d) => (electricField π.c A t x).ofLp i) x = -(s.unit.val k / π.c.val) β’ Time.deriv (fun (x_1 : Time) => (electricField π.c A x_1 x).ofLp i) t
theorem
Electromagnetism.ElectromagneticPotential.IsPlaneWave.magneticFieldMatrix_space_deriv_eq_time_deriv
{d : β}
{π : FreeSpace}
{A : ElectromagneticPotential d}
{s : Space.Direction d}
(P : IsPlaneWave π A s)
(hA : ContDiff β 2 A)
(t : Time)
(x : Space d)
(i j k : Fin d)
:
B. The magnetic field in terms of the electric field #
B.1. Time derivative of the magnetic field in terms of electric field #
theorem
Electromagnetism.ElectromagneticPotential.IsPlaneWave.time_deriv_magneticFieldMatrix_eq_electricField_mul_propogator
{d : β}
{π : FreeSpace}
{A : ElectromagneticPotential d}
{s : Space.Direction d}
(P : IsPlaneWave π A s)
(hA : ContDiff β 2 A)
(t : Time)
(x : Space d)
(i j : Fin d)
:
B.2. Space derivative of the magnetic field in terms of electric field #
theorem
Electromagnetism.ElectromagneticPotential.IsPlaneWave.space_deriv_magneticFieldMatrix_eq_electricField_mul_propogator
{d : β}
{π : FreeSpace}
{A : ElectromagneticPotential d}
{s : Space.Direction d}
(P : IsPlaneWave π A s)
(hA : ContDiff β 2 A)
(t : Time)
(x : Space d)
(i j k : Fin d)
:
B.3. Magnetic field equal propogator cross electric field up to constant #
theorem
Electromagnetism.ElectromagneticPotential.IsPlaneWave.magneticFieldMatrix_eq_propogator_cross_electricField
{d : β}
{π : FreeSpace}
{A : ElectromagneticPotential d}
{s : Space.Direction d}
(P : IsPlaneWave π A s)
(hA : ContDiff β 2 A)
(i j : Fin d)
:
C. The electric field in terms of the magnetic field #
C.1. The time derivative of the electric field in terms of magnetic field #
theorem
Electromagnetism.ElectromagneticPotential.IsPlaneWave.time_deriv_electricField_eq_magneticFieldMatrix
{d : β}
{π : FreeSpace}
{A : ElectromagneticPotential d}
{s : Space.Direction d}
(P : IsPlaneWave π A s)
(hA : ContDiff β (ββ€) A)
(h : IsExtrema π A 0)
(t : Time)
(x : Space d)
(i : Fin d)
:
Time.deriv (fun (x_1 : Time) => (electricField π.c A x_1 x).ofLp i) t = Time.deriv (fun (t : Time) => π.c.val * β j : Fin d, magneticFieldMatrix π.c A t x (i, j) * s.unit.val j) t
C.2. The space derivative of the electric field in terms of magnetic field #
theorem
Electromagnetism.ElectromagneticPotential.IsPlaneWave.space_deriv_electricField_eq_magneticFieldMatrix
{d : β}
{π : FreeSpace}
{A : ElectromagneticPotential d}
{s : Space.Direction d}
(P : IsPlaneWave π A s)
(hA : ContDiff β (ββ€) A)
(h : IsExtrema π A 0)
(t : Time)
(x : Space d)
(i k : Fin d)
:
Space.deriv k (fun (x : Space d) => (electricField π.c A t x).ofLp i) x = Space.deriv k (fun (x : Space d) => π.c.val * β j : Fin d, magneticFieldMatrix π.c A t x (i, j) * s.unit.val j) x
C.3. Electric field equal propogator cross magnetic field up to constant #
theorem
Electromagnetism.ElectromagneticPotential.IsPlaneWave.electricField_eq_propogator_cross_magneticFieldMatrix
{d : β}
{π : FreeSpace}
{A : ElectromagneticPotential d}
{s : Space.Direction d}
(P : IsPlaneWave π A s)
(hA : ContDiff β (ββ€) A)
(h : IsExtrema π A 0)
(i : Fin d)
: