PhysLean Documentation

PhysLean.Electromagnetism.Vacuum.IsPlaneWave

Electromagnetic wave equation #

i. Overview #

In this module we define a proposition IsPlaneWave on electromagnetic potentials which is true if the potential corresponds to a plane wave. From this we derive various properties of plane waves including the orthogonality of the electric field, magnetic field and direction of propagation, in general dimensions.

ii. Key results #

iii. Table of contents #

iv. References #

A. The property of being a plane wave #

The proposition on a electromagnetic potential which is true if it corresponds to a plane wave.

Equations
  • One or more equations did not get rendered due to their size.
Instances For

    A.1. The electric and magnetic functions from a plane wave #

    The corresponding electric field function from ℝ to EuclideanSpace ℝ (Fin d) of a plane wave.

    Equations
    Instances For

      The corresponding magnetic field function from ℝ to Fin d Γ— Fin d β†’ ℝ of a plane wave.

      Equations
      Instances For

        A.1.1. Electric function and magnetic function in terms of E and B fields #

        A.1.2. Uniquness of the electric function #

        A.1.3. Uniquness of the magnetic function #

        theorem Electromagnetism.ElectromagneticPotential.IsPlaneWave.magneticFunction_unique {d : β„•} {𝓕 : FreeSpace} {A : ElectromagneticPotential d} {s : Space.Direction d} (P : IsPlaneWave 𝓕 A s) (B1 : ℝ β†’ Fin d Γ— Fin d β†’ ℝ) (hB₁ : βˆ€ (t : Time) (x : Space d), magneticFieldMatrix 𝓕.c A t x = B1 (inner ℝ x s.unit - 𝓕.c.val * t.val)) :

        A.2. Differentiability conditions #

        A.3. Time derivative of electric and magnetic fields of a plane wave #

        theorem Electromagnetism.ElectromagneticPotential.IsPlaneWave.electricField_time_deriv {d : β„•} {𝓕 : FreeSpace} {A : ElectromagneticPotential d} {s : Space.Direction d} (P : IsPlaneWave 𝓕 A s) (hA : ContDiff ℝ 2 A) (t : Time) (x : Space d) :
        Time.deriv (fun (x_1 : Time) => electricField 𝓕.c A x_1 x) t = -𝓕.c.val β€’ (fderiv ℝ P.electricFunction (inner ℝ x s.unit - 𝓕.c.val * t.val)) 1
        theorem Electromagnetism.ElectromagneticPotential.IsPlaneWave.magneticFieldMatrix_time_deriv {d : β„•} {𝓕 : FreeSpace} {A : ElectromagneticPotential d} {s : Space.Direction d} (P : IsPlaneWave 𝓕 A s) (hA : ContDiff ℝ 2 A) (t : Time) (x : Space d) (i j : Fin d) :
        Time.deriv (fun (x_1 : Time) => magneticFieldMatrix 𝓕.c A x_1 x (i, j)) t = -𝓕.c.val β€’ (fderiv ℝ (fun (u : ℝ) => P.magneticFunction u (i, j)) (inner ℝ x s.unit - 𝓕.c.val * t.val)) 1

        A.4. Space derivative of electric and magnetic fields of a plane wave #

        theorem Electromagnetism.ElectromagneticPotential.IsPlaneWave.electricField_space_deriv {d : β„•} {𝓕 : FreeSpace} {A : ElectromagneticPotential d} {s : Space.Direction d} (P : IsPlaneWave 𝓕 A s) (hA : ContDiff ℝ 2 A) (t : Time) (x : Space d) (i : Fin d) :
        Space.deriv i (fun (x : Space d) => electricField 𝓕.c A t x) x = s.unit.val i β€’ (fderiv ℝ P.electricFunction (inner ℝ x s.unit - 𝓕.c.val * t.val)) 1
        theorem Electromagnetism.ElectromagneticPotential.IsPlaneWave.magneticFieldMatrix_space_deriv {d : β„•} {𝓕 : FreeSpace} {A : ElectromagneticPotential d} {s : Space.Direction d} (P : IsPlaneWave 𝓕 A s) (hA : ContDiff ℝ 2 A) (t : Time) (x : Space d) (i j k : Fin d) :
        Space.deriv k (fun (x : Space d) => magneticFieldMatrix 𝓕.c A t x (i, j)) x = s.unit.val k β€’ (fderiv ℝ (fun (u : ℝ) => P.magneticFunction u (i, j)) (inner ℝ x s.unit - 𝓕.c.val * t.val)) 1

        A.5. Space derivative in terms of time derivative #

        theorem Electromagnetism.ElectromagneticPotential.IsPlaneWave.electricField_space_deriv_eq_time_deriv {d : β„•} {𝓕 : FreeSpace} {A : ElectromagneticPotential d} {s : Space.Direction d} (P : IsPlaneWave 𝓕 A s) (hA : ContDiff ℝ 2 A) (t : Time) (x : Space d) (i k : Fin d) :
        Space.deriv k (fun (x : Space d) => (electricField 𝓕.c A t x).ofLp i) x = -(s.unit.val k / 𝓕.c.val) β€’ Time.deriv (fun (x_1 : Time) => (electricField 𝓕.c A x_1 x).ofLp i) t
        theorem Electromagnetism.ElectromagneticPotential.IsPlaneWave.magneticFieldMatrix_space_deriv_eq_time_deriv {d : β„•} {𝓕 : FreeSpace} {A : ElectromagneticPotential d} {s : Space.Direction d} (P : IsPlaneWave 𝓕 A s) (hA : ContDiff ℝ 2 A) (t : Time) (x : Space d) (i j k : Fin d) :
        Space.deriv k (fun (x : Space d) => magneticFieldMatrix 𝓕.c A t x (i, j)) x = -(s.unit.val k / 𝓕.c.val) β€’ Time.deriv (fun (x_1 : Time) => magneticFieldMatrix 𝓕.c A x_1 x (i, j)) t

        B. The magnetic field in terms of the electric field #

        B.1. Time derivative of the magnetic field in terms of electric field #

        theorem Electromagnetism.ElectromagneticPotential.IsPlaneWave.time_deriv_magneticFieldMatrix_eq_electricField_mul_propogator {d : β„•} {𝓕 : FreeSpace} {A : ElectromagneticPotential d} {s : Space.Direction d} (P : IsPlaneWave 𝓕 A s) (hA : ContDiff ℝ 2 A) (t : Time) (x : Space d) (i j : Fin d) :
        Time.deriv (fun (x_1 : Time) => magneticFieldMatrix 𝓕.c A x_1 x (i, j)) t = Time.deriv (fun (t : Time) => s.unit.val j / 𝓕.c.val * (electricField 𝓕.c A t x).ofLp i - s.unit.val i / 𝓕.c.val * (electricField 𝓕.c A t x).ofLp j) t

        B.2. Space derivative of the magnetic field in terms of electric field #

        theorem Electromagnetism.ElectromagneticPotential.IsPlaneWave.space_deriv_magneticFieldMatrix_eq_electricField_mul_propogator {d : β„•} {𝓕 : FreeSpace} {A : ElectromagneticPotential d} {s : Space.Direction d} (P : IsPlaneWave 𝓕 A s) (hA : ContDiff ℝ 2 A) (t : Time) (x : Space d) (i j k : Fin d) :
        Space.deriv k (fun (x : Space d) => magneticFieldMatrix 𝓕.c A t x (i, j)) x = Space.deriv k (fun (x : Space d) => s.unit.val j / 𝓕.c.val * (electricField 𝓕.c A t x).ofLp i - s.unit.val i / 𝓕.c.val * (electricField 𝓕.c A t x).ofLp j) x

        B.3. Magnetic field equal propogator cross electric field up to constant #

        theorem Electromagnetism.ElectromagneticPotential.IsPlaneWave.magneticFieldMatrix_eq_propogator_cross_electricField {d : β„•} {𝓕 : FreeSpace} {A : ElectromagneticPotential d} {s : Space.Direction d} (P : IsPlaneWave 𝓕 A s) (hA : ContDiff ℝ 2 A) (i j : Fin d) :
        βˆƒ (C : ℝ), βˆ€ (t : Time) (x : Space d), magneticFieldMatrix 𝓕.c A t x (i, j) = 1 / 𝓕.c.val * (s.unit.val j * (electricField 𝓕.c A t x).ofLp i - s.unit.val i * (electricField 𝓕.c A t x).ofLp j) + C

        C. The electric field in terms of the magnetic field #

        C.1. The time derivative of the electric field in terms of magnetic field #

        theorem Electromagnetism.ElectromagneticPotential.IsPlaneWave.time_deriv_electricField_eq_magneticFieldMatrix {d : β„•} {𝓕 : FreeSpace} {A : ElectromagneticPotential d} {s : Space.Direction d} (P : IsPlaneWave 𝓕 A s) (hA : ContDiff ℝ (β†‘βŠ€) A) (h : IsExtrema 𝓕 A 0) (t : Time) (x : Space d) (i : Fin d) :
        Time.deriv (fun (x_1 : Time) => (electricField 𝓕.c A x_1 x).ofLp i) t = Time.deriv (fun (t : Time) => 𝓕.c.val * βˆ‘ j : Fin d, magneticFieldMatrix 𝓕.c A t x (i, j) * s.unit.val j) t

        C.2. The space derivative of the electric field in terms of magnetic field #

        theorem Electromagnetism.ElectromagneticPotential.IsPlaneWave.space_deriv_electricField_eq_magneticFieldMatrix {d : β„•} {𝓕 : FreeSpace} {A : ElectromagneticPotential d} {s : Space.Direction d} (P : IsPlaneWave 𝓕 A s) (hA : ContDiff ℝ (β†‘βŠ€) A) (h : IsExtrema 𝓕 A 0) (t : Time) (x : Space d) (i k : Fin d) :
        Space.deriv k (fun (x : Space d) => (electricField 𝓕.c A t x).ofLp i) x = Space.deriv k (fun (x : Space d) => 𝓕.c.val * βˆ‘ j : Fin d, magneticFieldMatrix 𝓕.c A t x (i, j) * s.unit.val j) x

        C.3. Electric field equal propogator cross magnetic field up to constant #

        theorem Electromagnetism.ElectromagneticPotential.IsPlaneWave.electricField_eq_propogator_cross_magneticFieldMatrix {d : β„•} {𝓕 : FreeSpace} {A : ElectromagneticPotential d} {s : Space.Direction d} (P : IsPlaneWave 𝓕 A s) (hA : ContDiff ℝ (β†‘βŠ€) A) (h : IsExtrema 𝓕 A 0) (i : Fin d) :
        βˆƒ (C : (fun (x : Fin d) => ℝ) i), βˆ€ (t : Time) (x : Space d), (electricField 𝓕.c A t x).ofLp i = 𝓕.c.val * βˆ‘ j : Fin d, magneticFieldMatrix 𝓕.c A t x (i, j) * s.unit.val j + C