PhysLean Documentation

Mathlib.Analysis.Convex.Jensen

Jensen's inequality and maximum principle for convex functions #

In this file, we prove the finite Jensen inequality and the finite maximum principle for convex functions. The integral versions are to be found in Analysis.Convex.Integral.

Main declarations #

Jensen's inequalities:

As corollaries, we get:

Jensen's inequality #

theorem ConvexOn.map_centerMass_le {π•œ : Type u_1} {E : Type u_2} {Ξ² : Type u_4} {ΞΉ : Type u_5} [Field π•œ] [LinearOrder π•œ] [IsStrictOrderedRing π•œ] [AddCommGroup E] [AddCommGroup Ξ²] [PartialOrder Ξ²] [IsOrderedAddMonoid Ξ²] [Module π•œ E] [Module π•œ Ξ²] [IsStrictOrderedModule π•œ Ξ²] {s : Set E} {f : E β†’ Ξ²} {t : Finset ΞΉ} {w : ΞΉ β†’ π•œ} {p : ΞΉ β†’ E} (hf : ConvexOn π•œ s f) (hβ‚€ : βˆ€ i ∈ t, 0 ≀ w i) (h₁ : 0 < βˆ‘ i ∈ t, w i) (hmem : βˆ€ i ∈ t, p i ∈ s) :
f (t.centerMass w p) ≀ t.centerMass w (f ∘ p)

Convex Jensen's inequality, Finset.centerMass version.

theorem ConcaveOn.le_map_centerMass {π•œ : Type u_1} {E : Type u_2} {Ξ² : Type u_4} {ΞΉ : Type u_5} [Field π•œ] [LinearOrder π•œ] [IsStrictOrderedRing π•œ] [AddCommGroup E] [AddCommGroup Ξ²] [PartialOrder Ξ²] [IsOrderedAddMonoid Ξ²] [Module π•œ E] [Module π•œ Ξ²] [IsStrictOrderedModule π•œ Ξ²] {s : Set E} {f : E β†’ Ξ²} {t : Finset ΞΉ} {w : ΞΉ β†’ π•œ} {p : ΞΉ β†’ E} (hf : ConcaveOn π•œ s f) (hβ‚€ : βˆ€ i ∈ t, 0 ≀ w i) (h₁ : 0 < βˆ‘ i ∈ t, w i) (hmem : βˆ€ i ∈ t, p i ∈ s) :
t.centerMass w (f ∘ p) ≀ f (t.centerMass w p)

Concave Jensen's inequality, Finset.centerMass version.

theorem ConvexOn.map_sum_le {π•œ : Type u_1} {E : Type u_2} {Ξ² : Type u_4} {ΞΉ : Type u_5} [Field π•œ] [LinearOrder π•œ] [IsStrictOrderedRing π•œ] [AddCommGroup E] [AddCommGroup Ξ²] [PartialOrder Ξ²] [IsOrderedAddMonoid Ξ²] [Module π•œ E] [Module π•œ Ξ²] [IsStrictOrderedModule π•œ Ξ²] {s : Set E} {f : E β†’ Ξ²} {t : Finset ΞΉ} {w : ΞΉ β†’ π•œ} {p : ΞΉ β†’ E} (hf : ConvexOn π•œ s f) (hβ‚€ : βˆ€ i ∈ t, 0 ≀ w i) (h₁ : βˆ‘ i ∈ t, w i = 1) (hmem : βˆ€ i ∈ t, p i ∈ s) :
f (βˆ‘ i ∈ t, w i β€’ p i) ≀ βˆ‘ i ∈ t, w i β€’ f (p i)

Convex Jensen's inequality, Finset.sum version.

theorem ConcaveOn.le_map_sum {π•œ : Type u_1} {E : Type u_2} {Ξ² : Type u_4} {ΞΉ : Type u_5} [Field π•œ] [LinearOrder π•œ] [IsStrictOrderedRing π•œ] [AddCommGroup E] [AddCommGroup Ξ²] [PartialOrder Ξ²] [IsOrderedAddMonoid Ξ²] [Module π•œ E] [Module π•œ Ξ²] [IsStrictOrderedModule π•œ Ξ²] {s : Set E} {f : E β†’ Ξ²} {t : Finset ΞΉ} {w : ΞΉ β†’ π•œ} {p : ΞΉ β†’ E} (hf : ConcaveOn π•œ s f) (hβ‚€ : βˆ€ i ∈ t, 0 ≀ w i) (h₁ : βˆ‘ i ∈ t, w i = 1) (hmem : βˆ€ i ∈ t, p i ∈ s) :
βˆ‘ i ∈ t, w i β€’ f (p i) ≀ f (βˆ‘ i ∈ t, w i β€’ p i)

Concave Jensen's inequality, Finset.sum version.

theorem ConvexOn.map_add_sum_le {π•œ : Type u_1} {E : Type u_2} {Ξ² : Type u_4} {ΞΉ : Type u_5} [Field π•œ] [LinearOrder π•œ] [IsStrictOrderedRing π•œ] [AddCommGroup E] [AddCommGroup Ξ²] [PartialOrder Ξ²] [IsOrderedAddMonoid Ξ²] [Module π•œ E] [Module π•œ Ξ²] [IsStrictOrderedModule π•œ Ξ²] {s : Set E} {f : E β†’ Ξ²} {t : Finset ΞΉ} {w : ΞΉ β†’ π•œ} {p : ΞΉ β†’ E} {v : π•œ} {q : E} (hf : ConvexOn π•œ s f) (hβ‚€ : βˆ€ i ∈ t, 0 ≀ w i) (h₁ : v + βˆ‘ i ∈ t, w i = 1) (hmem : βˆ€ i ∈ t, p i ∈ s) (hv : 0 ≀ v) (hq : q ∈ s) :
f (v β€’ q + βˆ‘ i ∈ t, w i β€’ p i) ≀ v β€’ f q + βˆ‘ i ∈ t, w i β€’ f (p i)

Convex Jensen's inequality where an element plays a distinguished role.

theorem ConcaveOn.map_add_sum_le {π•œ : Type u_1} {E : Type u_2} {Ξ² : Type u_4} {ΞΉ : Type u_5} [Field π•œ] [LinearOrder π•œ] [IsStrictOrderedRing π•œ] [AddCommGroup E] [AddCommGroup Ξ²] [PartialOrder Ξ²] [IsOrderedAddMonoid Ξ²] [Module π•œ E] [Module π•œ Ξ²] [IsStrictOrderedModule π•œ Ξ²] {s : Set E} {f : E β†’ Ξ²} {t : Finset ΞΉ} {w : ΞΉ β†’ π•œ} {p : ΞΉ β†’ E} {v : π•œ} {q : E} (hf : ConcaveOn π•œ s f) (hβ‚€ : βˆ€ i ∈ t, 0 ≀ w i) (h₁ : v + βˆ‘ i ∈ t, w i = 1) (hmem : βˆ€ i ∈ t, p i ∈ s) (hv : 0 ≀ v) (hq : q ∈ s) :
v β€’ f q + βˆ‘ i ∈ t, w i β€’ f (p i) ≀ f (v β€’ q + βˆ‘ i ∈ t, w i β€’ p i)

Concave Jensen's inequality where an element plays a distinguished role.

Strict Jensen inequality #

theorem StrictConvexOn.map_sum_lt {π•œ : Type u_1} {E : Type u_2} {Ξ² : Type u_4} {ΞΉ : Type u_5} [Field π•œ] [LinearOrder π•œ] [IsStrictOrderedRing π•œ] [AddCommGroup E] [AddCommGroup Ξ²] [PartialOrder Ξ²] [IsOrderedAddMonoid Ξ²] [Module π•œ E] [Module π•œ Ξ²] [IsStrictOrderedModule π•œ Ξ²] {s : Set E} {f : E β†’ Ξ²} {t : Finset ΞΉ} {w : ΞΉ β†’ π•œ} {p : ΞΉ β†’ E} (hf : StrictConvexOn π•œ s f) (hβ‚€ : βˆ€ i ∈ t, 0 < w i) (h₁ : βˆ‘ i ∈ t, w i = 1) (hmem : βˆ€ i ∈ t, p i ∈ s) (hp : βˆƒ j ∈ t, βˆƒ k ∈ t, p j β‰  p k) :
f (βˆ‘ i ∈ t, w i β€’ p i) < βˆ‘ i ∈ t, w i β€’ f (p i)

Convex strict Jensen inequality.

If the function is strictly convex, the weights are strictly positive and the indexed family of points is non-constant, then Jensen's inequality is strict.

See also StrictConvexOn.map_sum_eq_iff.

theorem StrictConcaveOn.lt_map_sum {π•œ : Type u_1} {E : Type u_2} {Ξ² : Type u_4} {ΞΉ : Type u_5} [Field π•œ] [LinearOrder π•œ] [IsStrictOrderedRing π•œ] [AddCommGroup E] [AddCommGroup Ξ²] [PartialOrder Ξ²] [IsOrderedAddMonoid Ξ²] [Module π•œ E] [Module π•œ Ξ²] [IsStrictOrderedModule π•œ Ξ²] {s : Set E} {f : E β†’ Ξ²} {t : Finset ΞΉ} {w : ΞΉ β†’ π•œ} {p : ΞΉ β†’ E} (hf : StrictConcaveOn π•œ s f) (hβ‚€ : βˆ€ i ∈ t, 0 < w i) (h₁ : βˆ‘ i ∈ t, w i = 1) (hmem : βˆ€ i ∈ t, p i ∈ s) (hp : βˆƒ j ∈ t, βˆƒ k ∈ t, p j β‰  p k) :
βˆ‘ i ∈ t, w i β€’ f (p i) < f (βˆ‘ i ∈ t, w i β€’ p i)

Concave strict Jensen inequality.

If the function is strictly concave, the weights are strictly positive and the indexed family of points is non-constant, then Jensen's inequality is strict.

See also StrictConcaveOn.map_sum_eq_iff.

Equality case of Jensen's inequality #

theorem StrictConvexOn.eq_of_le_map_sum {π•œ : Type u_1} {E : Type u_2} {Ξ² : Type u_4} {ΞΉ : Type u_5} [Field π•œ] [LinearOrder π•œ] [IsStrictOrderedRing π•œ] [AddCommGroup E] [AddCommGroup Ξ²] [PartialOrder Ξ²] [IsOrderedAddMonoid Ξ²] [Module π•œ E] [Module π•œ Ξ²] [IsStrictOrderedModule π•œ Ξ²] {s : Set E} {f : E β†’ Ξ²} {t : Finset ΞΉ} {w : ΞΉ β†’ π•œ} {p : ΞΉ β†’ E} (hf : StrictConvexOn π•œ s f) (hβ‚€ : βˆ€ i ∈ t, 0 < w i) (h₁ : βˆ‘ i ∈ t, w i = 1) (hmem : βˆ€ i ∈ t, p i ∈ s) (h_eq : βˆ‘ i ∈ t, w i β€’ f (p i) ≀ f (βˆ‘ i ∈ t, w i β€’ p i)) ⦃j : ι⦄ :
j ∈ t β†’ βˆ€ ⦃k : ι⦄, k ∈ t β†’ p j = p k

A form of the equality case of Jensen's equality.

For a strictly convex function f and positive weights w, if f (βˆ‘ i ∈ t, w i β€’ p i) = βˆ‘ i ∈ t, w i β€’ f (p i), then the points p are all equal.

See also StrictConvexOn.map_sum_eq_iff.

theorem StrictConcaveOn.eq_of_map_sum_eq {π•œ : Type u_1} {E : Type u_2} {Ξ² : Type u_4} {ΞΉ : Type u_5} [Field π•œ] [LinearOrder π•œ] [IsStrictOrderedRing π•œ] [AddCommGroup E] [AddCommGroup Ξ²] [PartialOrder Ξ²] [IsOrderedAddMonoid Ξ²] [Module π•œ E] [Module π•œ Ξ²] [IsStrictOrderedModule π•œ Ξ²] {s : Set E} {f : E β†’ Ξ²} {t : Finset ΞΉ} {w : ΞΉ β†’ π•œ} {p : ΞΉ β†’ E} (hf : StrictConcaveOn π•œ s f) (hβ‚€ : βˆ€ i ∈ t, 0 < w i) (h₁ : βˆ‘ i ∈ t, w i = 1) (hmem : βˆ€ i ∈ t, p i ∈ s) (h_eq : f (βˆ‘ i ∈ t, w i β€’ p i) ≀ βˆ‘ i ∈ t, w i β€’ f (p i)) ⦃j : ι⦄ :
j ∈ t β†’ βˆ€ ⦃k : ι⦄, k ∈ t β†’ p j = p k

A form of the equality case of Jensen's equality.

For a strictly concave function f and positive weights w, if f (βˆ‘ i ∈ t, w i β€’ p i) = βˆ‘ i ∈ t, w i β€’ f (p i), then the points p are all equal.

See also StrictConcaveOn.map_sum_eq_iff.

theorem StrictConvexOn.map_sum_eq_iff {π•œ : Type u_1} {E : Type u_2} {Ξ² : Type u_4} {ΞΉ : Type u_5} [Field π•œ] [LinearOrder π•œ] [IsStrictOrderedRing π•œ] [AddCommGroup E] [AddCommGroup Ξ²] [PartialOrder Ξ²] [IsOrderedAddMonoid Ξ²] [Module π•œ E] [Module π•œ Ξ²] [IsStrictOrderedModule π•œ Ξ²] {s : Set E} {f : E β†’ Ξ²} {t : Finset ΞΉ} {w : ΞΉ β†’ π•œ} {p : ΞΉ β†’ E} (hf : StrictConvexOn π•œ s f) (hβ‚€ : βˆ€ i ∈ t, 0 < w i) (h₁ : βˆ‘ i ∈ t, w i = 1) (hmem : βˆ€ i ∈ t, p i ∈ s) :
f (βˆ‘ i ∈ t, w i β€’ p i) = βˆ‘ i ∈ t, w i β€’ f (p i) ↔ βˆ€ j ∈ t, p j = βˆ‘ i ∈ t, w i β€’ p i

Canonical form of the equality case of Jensen's equality.

For a strictly convex function f and positive weights w, we have f (βˆ‘ i ∈ t, w i β€’ p i) = βˆ‘ i ∈ t, w i β€’ f (p i) if and only if the points p are all equal (and in fact all equal to their center of mass w.r.t. w).

theorem StrictConcaveOn.map_sum_eq_iff {π•œ : Type u_1} {E : Type u_2} {Ξ² : Type u_4} {ΞΉ : Type u_5} [Field π•œ] [LinearOrder π•œ] [IsStrictOrderedRing π•œ] [AddCommGroup E] [AddCommGroup Ξ²] [PartialOrder Ξ²] [IsOrderedAddMonoid Ξ²] [Module π•œ E] [Module π•œ Ξ²] [IsStrictOrderedModule π•œ Ξ²] {s : Set E} {f : E β†’ Ξ²} {t : Finset ΞΉ} {w : ΞΉ β†’ π•œ} {p : ΞΉ β†’ E} (hf : StrictConcaveOn π•œ s f) (hβ‚€ : βˆ€ i ∈ t, 0 < w i) (h₁ : βˆ‘ i ∈ t, w i = 1) (hmem : βˆ€ i ∈ t, p i ∈ s) :
f (βˆ‘ i ∈ t, w i β€’ p i) = βˆ‘ i ∈ t, w i β€’ f (p i) ↔ βˆ€ j ∈ t, p j = βˆ‘ i ∈ t, w i β€’ p i

Canonical form of the equality case of Jensen's equality.

For a strictly concave function f and positive weights w, we have f (βˆ‘ i ∈ t, w i β€’ p i) = βˆ‘ i ∈ t, w i β€’ f (p i) if and only if the points p are all equal (and in fact all equal to their center of mass w.r.t. w).

theorem StrictConvexOn.map_sum_eq_iff' {π•œ : Type u_1} {E : Type u_2} {Ξ² : Type u_4} {ΞΉ : Type u_5} [Field π•œ] [LinearOrder π•œ] [IsStrictOrderedRing π•œ] [AddCommGroup E] [AddCommGroup Ξ²] [PartialOrder Ξ²] [IsOrderedAddMonoid Ξ²] [Module π•œ E] [Module π•œ Ξ²] [IsStrictOrderedModule π•œ Ξ²] {s : Set E} {f : E β†’ Ξ²} {t : Finset ΞΉ} {w : ΞΉ β†’ π•œ} {p : ΞΉ β†’ E} (hf : StrictConvexOn π•œ s f) (hβ‚€ : βˆ€ i ∈ t, 0 ≀ w i) (h₁ : βˆ‘ i ∈ t, w i = 1) (hmem : βˆ€ i ∈ t, p i ∈ s) :
f (βˆ‘ i ∈ t, w i β€’ p i) = βˆ‘ i ∈ t, w i β€’ f (p i) ↔ βˆ€ j ∈ t, w j β‰  0 β†’ p j = βˆ‘ i ∈ t, w i β€’ p i

Canonical form of the equality case of Jensen's equality.

For a strictly convex function f and nonnegative weights w, we have f (βˆ‘ i ∈ t, w i β€’ p i) = βˆ‘ i ∈ t, w i β€’ f (p i) if and only if the points p with nonzero weight are all equal (and in fact all equal to their center of mass w.r.t. w).

theorem StrictConcaveOn.map_sum_eq_iff' {π•œ : Type u_1} {E : Type u_2} {Ξ² : Type u_4} {ΞΉ : Type u_5} [Field π•œ] [LinearOrder π•œ] [IsStrictOrderedRing π•œ] [AddCommGroup E] [AddCommGroup Ξ²] [PartialOrder Ξ²] [IsOrderedAddMonoid Ξ²] [Module π•œ E] [Module π•œ Ξ²] [IsStrictOrderedModule π•œ Ξ²] {s : Set E} {f : E β†’ Ξ²} {t : Finset ΞΉ} {w : ΞΉ β†’ π•œ} {p : ΞΉ β†’ E} (hf : StrictConcaveOn π•œ s f) (hβ‚€ : βˆ€ i ∈ t, 0 ≀ w i) (h₁ : βˆ‘ i ∈ t, w i = 1) (hmem : βˆ€ i ∈ t, p i ∈ s) :
f (βˆ‘ i ∈ t, w i β€’ p i) = βˆ‘ i ∈ t, w i β€’ f (p i) ↔ βˆ€ j ∈ t, w j β‰  0 β†’ p j = βˆ‘ i ∈ t, w i β€’ p i

Canonical form of the equality case of Jensen's equality.

For a strictly concave function f and nonnegative weights w, we have f (βˆ‘ i ∈ t, w i β€’ p i) = βˆ‘ i ∈ t, w i β€’ f (p i) if and only if the points p with nonzero weight are all equal (and in fact all equal to their center of mass w.r.t. w).

Maximum principle #

theorem ConvexOn.le_sup_of_mem_convexHull {π•œ : Type u_1} {E : Type u_2} {Ξ² : Type u_4} [Field π•œ] [LinearOrder π•œ] [IsStrictOrderedRing π•œ] [AddCommGroup E] [AddCommGroup Ξ²] [LinearOrder Ξ²] [IsOrderedAddMonoid Ξ²] [Module π•œ E] [Module π•œ Ξ²] [IsStrictOrderedModule π•œ Ξ²] {s : Set E} {f : E β†’ Ξ²} {x : E} {t : Finset E} (hf : ConvexOn π•œ s f) (hts : ↑t βŠ† s) (hx : x ∈ (convexHull π•œ) ↑t) :
f x ≀ t.sup' β‹― f
theorem ConvexOn.inf_le_of_mem_convexHull {π•œ : Type u_1} {E : Type u_2} {Ξ² : Type u_4} [Field π•œ] [LinearOrder π•œ] [IsStrictOrderedRing π•œ] [AddCommGroup E] [AddCommGroup Ξ²] [LinearOrder Ξ²] [IsOrderedAddMonoid Ξ²] [Module π•œ E] [Module π•œ Ξ²] [IsStrictOrderedModule π•œ Ξ²] {s : Set E} {f : E β†’ Ξ²} {x : E} {t : Finset E} (hf : ConcaveOn π•œ s f) (hts : ↑t βŠ† s) (hx : x ∈ (convexHull π•œ) ↑t) :
t.inf' β‹― f ≀ f x
theorem ConvexOn.exists_ge_of_centerMass {π•œ : Type u_1} {E : Type u_2} {Ξ² : Type u_4} {ΞΉ : Type u_5} [Field π•œ] [LinearOrder π•œ] [IsStrictOrderedRing π•œ] [AddCommGroup E] [AddCommGroup Ξ²] [LinearOrder Ξ²] [IsOrderedAddMonoid Ξ²] [Module π•œ E] [Module π•œ Ξ²] [IsStrictOrderedModule π•œ Ξ²] {s : Set E} {f : E β†’ Ξ²} {w : ΞΉ β†’ π•œ} {p : ΞΉ β†’ E} {t : Finset ΞΉ} (h : ConvexOn π•œ s f) (hwβ‚€ : βˆ€ i ∈ t, 0 ≀ w i) (hw₁ : 0 < βˆ‘ i ∈ t, w i) (hp : βˆ€ i ∈ t, p i ∈ s) :
βˆƒ i ∈ t, f (t.centerMass w p) ≀ f (p i)

If a function f is convex on s, then the value it takes at some center of mass of points of s is less than the value it takes on one of those points.

theorem ConcaveOn.exists_le_of_centerMass {π•œ : Type u_1} {E : Type u_2} {Ξ² : Type u_4} {ΞΉ : Type u_5} [Field π•œ] [LinearOrder π•œ] [IsStrictOrderedRing π•œ] [AddCommGroup E] [AddCommGroup Ξ²] [LinearOrder Ξ²] [IsOrderedAddMonoid Ξ²] [Module π•œ E] [Module π•œ Ξ²] [IsStrictOrderedModule π•œ Ξ²] {s : Set E} {f : E β†’ Ξ²} {w : ΞΉ β†’ π•œ} {p : ΞΉ β†’ E} {t : Finset ΞΉ} (h : ConcaveOn π•œ s f) (hwβ‚€ : βˆ€ i ∈ t, 0 ≀ w i) (hw₁ : 0 < βˆ‘ i ∈ t, w i) (hp : βˆ€ i ∈ t, p i ∈ s) :
βˆƒ i ∈ t, f (p i) ≀ f (t.centerMass w p)

If a function f is concave on s, then the value it takes at some center of mass of points of s is greater than the value it takes on one of those points.

theorem ConvexOn.exists_ge_of_mem_convexHull {π•œ : Type u_1} {E : Type u_2} {Ξ² : Type u_4} [Field π•œ] [LinearOrder π•œ] [IsStrictOrderedRing π•œ] [AddCommGroup E] [AddCommGroup Ξ²] [LinearOrder Ξ²] [IsOrderedAddMonoid Ξ²] [Module π•œ E] [Module π•œ Ξ²] [IsStrictOrderedModule π•œ Ξ²] {s : Set E} {f : E β†’ Ξ²} {x : E} {t : Set E} (hf : ConvexOn π•œ s f) (hts : t βŠ† s) (hx : x ∈ (convexHull π•œ) t) :
βˆƒ y ∈ t, f x ≀ f y

Maximum principle for convex functions. If a function f is convex on the convex hull of s, then the eventual maximum of f on convexHull π•œ s lies in s.

theorem ConcaveOn.exists_le_of_mem_convexHull {π•œ : Type u_1} {E : Type u_2} {Ξ² : Type u_4} [Field π•œ] [LinearOrder π•œ] [IsStrictOrderedRing π•œ] [AddCommGroup E] [AddCommGroup Ξ²] [LinearOrder Ξ²] [IsOrderedAddMonoid Ξ²] [Module π•œ E] [Module π•œ Ξ²] [IsStrictOrderedModule π•œ Ξ²] {s : Set E} {f : E β†’ Ξ²} {x : E} {t : Set E} (hf : ConcaveOn π•œ s f) (hts : t βŠ† s) (hx : x ∈ (convexHull π•œ) t) :
βˆƒ y ∈ t, f y ≀ f x

Minimum principle for concave functions. If a function f is concave on the convex hull of s, then the eventual minimum of f on convexHull π•œ s lies in s.

theorem ConvexOn.le_max_of_mem_segment {π•œ : Type u_1} {E : Type u_2} {Ξ² : Type u_4} [Field π•œ] [LinearOrder π•œ] [IsStrictOrderedRing π•œ] [AddCommGroup E] [AddCommGroup Ξ²] [LinearOrder Ξ²] [IsOrderedAddMonoid Ξ²] [Module π•œ E] [Module π•œ Ξ²] [IsStrictOrderedModule π•œ Ξ²] {s : Set E} {f : E β†’ Ξ²} {x y z : E} (hf : ConvexOn π•œ s f) (hx : x ∈ s) (hy : y ∈ s) (hz : z ∈ segment π•œ x y) :
f z ≀ max (f x) (f y)

Maximum principle for convex functions on a segment. If a function f is convex on the segment [x, y], then the eventual maximum of f on [x, y] is at x or y.

theorem ConcaveOn.min_le_of_mem_segment {π•œ : Type u_1} {E : Type u_2} {Ξ² : Type u_4} [Field π•œ] [LinearOrder π•œ] [IsStrictOrderedRing π•œ] [AddCommGroup E] [AddCommGroup Ξ²] [LinearOrder Ξ²] [IsOrderedAddMonoid Ξ²] [Module π•œ E] [Module π•œ Ξ²] [IsStrictOrderedModule π•œ Ξ²] {s : Set E} {f : E β†’ Ξ²} {x y z : E} (hf : ConcaveOn π•œ s f) (hx : x ∈ s) (hy : y ∈ s) (hz : z ∈ segment π•œ x y) :
min (f x) (f y) ≀ f z

Minimum principle for concave functions on a segment. If a function f is concave on the segment [x, y], then the eventual minimum of f on [x, y] is at x or y.

theorem ConvexOn.le_max_of_mem_Icc {π•œ : Type u_1} {Ξ² : Type u_4} [Field π•œ] [LinearOrder π•œ] [IsStrictOrderedRing π•œ] [AddCommGroup Ξ²] [LinearOrder Ξ²] [IsOrderedAddMonoid Ξ²] [Module π•œ Ξ²] [IsStrictOrderedModule π•œ Ξ²] {s : Set π•œ} {f : π•œ β†’ Ξ²} {x y z : π•œ} (hf : ConvexOn π•œ s f) (hx : x ∈ s) (hy : y ∈ s) (hz : z ∈ Set.Icc x y) :
f z ≀ max (f x) (f y)

Maximum principle for convex functions on an interval. If a function f is convex on the interval [x, y], then the eventual maximum of f on [x, y] is at x or y.

theorem ConcaveOn.min_le_of_mem_Icc {π•œ : Type u_1} {Ξ² : Type u_4} [Field π•œ] [LinearOrder π•œ] [IsStrictOrderedRing π•œ] [AddCommGroup Ξ²] [LinearOrder Ξ²] [IsOrderedAddMonoid Ξ²] [Module π•œ Ξ²] [IsStrictOrderedModule π•œ Ξ²] {s : Set π•œ} {f : π•œ β†’ Ξ²} {x y z : π•œ} (hf : ConcaveOn π•œ s f) (hx : x ∈ s) (hy : y ∈ s) (hz : z ∈ Set.Icc x y) :
min (f x) (f y) ≀ f z

Minimum principle for concave functions on an interval. If a function f is concave on the interval [x, y], then the eventual minimum of f on [x, y] is at x or y.

theorem ConvexOn.bddAbove_convexHull {π•œ : Type u_1} {E : Type u_2} {Ξ² : Type u_4} [Field π•œ] [LinearOrder π•œ] [IsStrictOrderedRing π•œ] [AddCommGroup E] [AddCommGroup Ξ²] [LinearOrder Ξ²] [IsOrderedAddMonoid Ξ²] [Module π•œ E] [Module π•œ Ξ²] [IsStrictOrderedModule π•œ Ξ²] {f : E β†’ Ξ²} {s t : Set E} (hst : s βŠ† t) (hf : ConvexOn π•œ t f) :
BddAbove (f '' s) β†’ BddAbove (f '' (convexHull π•œ) s)
theorem ConcaveOn.bddBelow_convexHull {π•œ : Type u_1} {E : Type u_2} {Ξ² : Type u_4} [Field π•œ] [LinearOrder π•œ] [IsStrictOrderedRing π•œ] [AddCommGroup E] [AddCommGroup Ξ²] [LinearOrder Ξ²] [IsOrderedAddMonoid Ξ²] [Module π•œ E] [Module π•œ Ξ²] [IsStrictOrderedModule π•œ Ξ²] {f : E β†’ Ξ²} {s t : Set E} (hst : s βŠ† t) (hf : ConcaveOn π•œ t f) :
BddBelow (f '' s) β†’ BddBelow (f '' (convexHull π•œ) s)