TODO list
This TODO list is automatically created from the Lean files. It contains a number of different types of TODO items:Informal definition
Corresponds to a definition given as an English string which needs formalizing.Informal Lemma
Corresponds to a lemma given as an English string which needs formalizing.Semiformal result
Corresponds to a result which the declaration of the result is formalized, but the proof or definition itself is not.Sorryful result
Corresponds to a result containing `sorry`. These are the easiest place to start.TODO Item
Corresponds to a general TODO item.
Classical Mechanics ⚙️
Hide 39 TODO items:
TODO Item
(file : PhysLean.ClassicalMechanics.HarmonicOscillator.Basic)Create a new folder for the damped harmonic oscillator, initially as a place-holder.
See on GitHub Tag: 6VZHCTODO Item
(file : PhysLean.ClassicalMechanics.HarmonicOscillator.Solution)Implement other initial condtions. For example:
- initial conditions at a given time.
- Two positions at different times.
- Two velocities at different times.
And convert them into the type
InitialConditionsabove (which may need generalzing a bit to make this possible).
Sorryful result
(file : ClassicalMechanics.HarmonicOscillator.InitialConditions.trajectories_unique)See on GitHub Tag: ClassicalMechanics.HarmonicOscillator.InitialConditions.trajectories_unique
TODO Item
(file : PhysLean.ClassicalMechanics.HarmonicOscillator.Solution)For the classical harmonic oscillator find the time for which it returns to it’s initial position and velocity.
See on GitHub Tag: 6VZI3TODO Item
(file : PhysLean.ClassicalMechanics.HarmonicOscillator.Solution)For the classical harmonic oscillator find the times for which it passes through zero.
See on GitHub Tag: 6VZJBTODO Item
(file : PhysLean.ClassicalMechanics.RigidBody.Basic)The definition of a rigid body is currently defined via linear maps from the space of smooth functions to ℝ. When possible, it should be change to continuous linear maps.
See on GitHub Tag: MEX5SInformal definition
(RigidBody.kineticEnergy)The kinetic energy of a rigid body.
See on GitHub Tag: MEYBMInformal definition
(RigidBody.coordinate_system)One can describe the motion of rigid body with a fixed (inertial) coordinate system (X,Y,Z) and a moving system (x₁,x₂,x₃) rigidly attached to the body.
See on GitHub Tag: LL31.3Informal Lemma
(RigidBody.rigid_body_dof)A rigid body in three-dimensional space has six degrees of freedom: three translational (for the position of its centre of mass) and three rotational (for its orientation).
See on GitHub Tag: LL32-6DFInformal Lemma
(RigidBody.velocity_decomposition)The velocity v of any point in a rigid body is v = V + Ω × r, where V is the velocity of the origin of the moving system and Ω is the angular velocity.
See on GitHub Tag: LL31.L3Informal Lemma
(RigidBody.angular_velocity_is_well_defined)The angular velocity of rotation of a rigid body from a system of coordinates fixed in the body is independent of the system chosen.
See on GitHub Tag: LL32-AMInformal Lemma
(RigidBody.decomposition_of_motion)The motion of a rigid body can be decomposed into a translation of some reference point plus a rotation about that point. There exists a time-dependent vector V(t) and angular velocity ω(t) such that v(r) = V + ω × r, where r is measured from the reference point.
See on GitHub Tag: LL32-DMInformal Lemma
(RigidBody.center_of_mass_point_moves_as_particle)The centre of mass of a rigid body moves as if all mass were concentrated at that point and acted upon by the resultant external force: M a_CM = ∑ F_ext.
See on GitHub Tag: LL32-CMInformal Lemma
(RigidBody.angular_momentum_about_point)The total angular momentum about a point O is L = ∫ r × v dm. With v = V + ω × r about the centre of mass, L = R × (M V) + I_CM ω, where R is the centre of mass position.
See on GitHub Tag: LL32-LInformal Lemma
(RigidBody.translational_equation_inertial)In the inertial frame, the translational equation of motion of a rigid body is given by
dP/dt = F, where P is the total linear momentum and F is the total external force acting
on the body.
Informal Lemma
(RigidBody.rotational_equation_inertial)In the inertial frame, the rotational equation of motion of a rigid body about the center of
mass is given by dM/dt = K, where M is the total angular momentum and K is the total
external torque.
Informal Lemma
(RigidBody.kinetic_energy_decomposition)The kinetic energy decomposes into translational and rotational parts: T = (1/2) M |V|² + (1/2) ω ⋅ I_CM ω. Here V is the velocity of the centre of mass and I_CM is the inertia tensor about that point.
See on GitHub Tag: LL32-TKInformal Lemma
(RigidBody.parallel_axis_theorem)If I_O is the inertia tensor about a point O, then the inertia tensor about a parallel point O’ displaced by a is I_{O’} = I_O + M(|a|² 1 − a ⊗ a). This is the parallel-axis theorem.
See on GitHub Tag: LL32-PAInformal definition
(RigidBody.principal_axes_of_inertia)Because the inertia tensor is real symmetric, there exists an orthonormal basis of principal axes in which it is diagonal. The corresponding directions are the principal axes of inertia.
See on GitHub Tag: LL32-PAEInformal Lemma
(RigidBody.principal_axes_of_inertia_bound)None of the principal moments of inertia can exceed the sum of other two.
See on GitHub Tag: LL32-PAEBInformal definition
(RigidBody.asymmetrical_top)An asymmetrical top is when none of the principal moments of inertia are equal.
See on GitHub Tag: LL32-ASTInformal definition
(RigidBody.symmetrical_top)A symmetrical top is when only two of the principal moments of inertia are equal.
See on GitHub Tag: LL32-STInformal definition
(RigidBody.spherical_top)A spherical top is when all three of the principal moments of inertia are equal.
See on GitHub Tag: LL32-SPTInformal definition
(RigidBody.RotatingFrame)A rotating body-fixed frame is a coordinate system attached to the body that rotates with the body relative to an inertial (fixed) frame. The frame is characterised by its angular velocity vector Ω(t).
See on GitHub Tag: LL32-RFInformal definition
(RigidBody.rotating_frame_derivative)The time derivative in the rotating frame, d’/dt, is the derivative of the components of a vector with respect to time when expressed in the rotating (body-fixed) frame.
See on GitHub Tag: LL32-dprimeInformal Lemma
(RigidBody.transport_law_inertial_rotating)For any vector field A(t), its inertial-frame time derivative equals the rotating-frame derivative plus the contribution from the frame rotation: (dA/dt)_inertial = (dA/dt)_rotating + Ω × A. Here Ω is the angular velocity of the rotating frame.
See on GitHub Tag: LL36-LtransportInformal Lemma
(RigidBody.transport_law_for_momentum)For linear momentum, the relation between inertial and rotating derivatives is (dP/dt)_inertial = d’P/dt + Ω × P. So, d’P/dt + Ω × P = F which is the linear-momentum equation in the rotating frame.
See on GitHub Tag: LL32-transportPInformal Lemma
(RigidBody.transport_law_for_angular_momentum)For angular momentum, the relation between inertial and rotating derivatives is (dM/dt)_inertial = d’M/dt + Ω × M, and with the rotational form of Newton’s law M_tot = (dM/dt)_inertial this yields d’M/dt + Ω × M = K, the angular-momentum equation in the rotating frame.
See on GitHub Tag: LL32-transportMInformal Lemma
(RigidBody.euler_equations)When motion is described in body-fixed principal axes (I₁, I₂, I₃ diagonal), the equations of rotational motion (Euler’s equations) are: I₁ dω₁/dt + (I₃ − I₂) ω₂ ω₃ = M₁, with cyclic permutations. M is the external torque about the centre of mass.
See on GitHub Tag: LL32-EQInformal Lemma
(RigidBody.steady_rotation_conditions)A rigid body can perform steady (uniform) rotation about any principal axis if the torque about that axis vanishes. Stability depends on the ordering of principal moments.
See on GitHub Tag: LL32-SRInformal Lemma
(RigidBody.intermediate_axis_instability)Rotations about the largest and smallest principal axes are stable under small perturbations; rotation about the intermediate axis is unstable (tennis-racket effect).
See on GitHub Tag: LL32-IAIInformal Lemma
(RigidBody.reduction_to_two_body)If a rigid body is confined to planar motion, its dynamics reduce to a two-dimensional problem: the inertia reduces to a scalar moment and rotation is described by a single angular velocity.
See on GitHub Tag: LL32-RTBInformal Lemma
(RigidBody.rigid_body_work_and_power)The power delivered to a rigid body by forces is P = ∑ Fᵢ ⋅ vᵢ = F_tot ⋅ V + M ⋅ ω, where F_tot is total force, V the reference point velocity, and M the torque. Translational and rotational contributions separate.
See on GitHub Tag: LL32-WPInformal Lemma
(RigidBody.small_oscillations_about_equilibrium)Small oscillations about a stable equilibrium orientation are governed by linearised equations obtained by expanding energy to second order in angular displacements. Normal modes and frequencies depend on inertia and restoring torques.
See on GitHub Tag: LL32-SOSorryful result
(file : RigidBody.solidSphere_inertiaTensor)See on GitHub Tag: RigidBody.solidSphere_inertiaTensor
TODO Item
(file : PhysLean.ClassicalMechanics.Scattering.RigidSphere)Derive the scattering cross section of a perfectly rigid sphere.
See on GitHub Tag: L7OTPTODO Item
(file : PhysLean.ClassicalMechanics.Vibrations.LinearTriatomic)Derive the frequencies of vibaration of a symmetric linear triatomic molecule.
See on GitHub Tag: L7O4ITODO Item
(file : PhysLean.ClassicalMechanics.WaveEquation.HarmonicWave)Show that the wave equation is invariant under rotations and any direction s
can be rotated to EuclideanSpace.single 2 1 if only one wave is concerened.
TODO Item
(file : PhysLean.ClassicalMechanics.WaveEquation.HarmonicWave)Show that any disturbance (subject to certian conditions) can be expressed as a superposition of harmonic plane waves via Fourier integral.
See on GitHub Tag: EGU3ECondensed Matter 🧊
Hide 2 TODO items:
Sorryful result
(file : CondensedMatter.TightBindingChain.hamiltonian_hermitian)See on GitHub Tag: CondensedMatter.TightBindingChain.hamiltonian_hermitian
Sorryful result
(file : CondensedMatter.TightBindingChain.energyEigenstate_orthogonal)See on GitHub Tag: CondensedMatter.TightBindingChain.energyEigenstate_orthogonal
Cosmology 🌌
Hide 8 TODO items:
Sorryful result
(file : Cosmology.SpatialGeometry.tendsto_sinh_rx_over_x)See on GitHub Tag: Cosmology.SpatialGeometry.tendsto_sinh_rx_over_x
Sorryful result
(file : Cosmology.SpatialGeometry.limit_S_saddle)See on GitHub Tag: Cosmology.SpatialGeometry.limit_S_saddle
Sorryful result
(file : Cosmology.SpatialGeometry.tendsto_sin_rx_over_x)See on GitHub Tag: Cosmology.SpatialGeometry.tendsto_sin_rx_over_x
Sorryful result
(file : Cosmology.SpatialGeometry.limit_S_sphere)See on GitHub Tag: Cosmology.SpatialGeometry.limit_S_sphere
Informal Lemma
(Cosmology.FLRW.FriedmannEquation.decelerationParameter_eq_one_plus_hubbleConstant)The deceleration parameter is equal to - (1 + (dₜ H)/H^2).
Informal Lemma
(Cosmology.FLRW.FriedmannEquation.time_evolution_hubbleConstant)The time evolution of the hubble parameter is equal to dₜ H = - H^2 (1 + q).
Informal Lemma
(Cosmology.FLRW.FriedmannEquation.hubbleConstant_decrease_iff)There exists a time at which the hubble constant decreases if and only if
there exists a time where the deceleration parameter is less then -1.
Electromagnetism ⚡
Hide 4 TODO items:
TODO Item
(file : PhysLean.Electromagnetism.Basic)Charge density and current density should be generalized to signed measures, in such a way that they are still easy to work with and can be integrated with with tensor notation. See here: https://leanprover.zulipchat.com/#narrow/channel/479953-PhysLean/topic/Maxwell’s.20Equations
See on GitHub Tag: 6V2UZTODO Item
(file : PhysLean.Electromagnetism.Electrostatics.Basic)Generalize Faraday’s law to arbitrary space dimensions. This may involve generalizing the curl operator to arbitrary dimensions.
See on GitHub Tag: IBQW4Informal Lemma
(Electromagnetism.ThreeDimPointParticle.electricField_rotationally_invariant)The electrostatic field of a point particle is rotationally invariant.
See on GitHub Tag: L7NXFSorryful result
(file : Electromagnetism.OneDimVacuum.gaussLaw_iff)See on GitHub Tag: Electromagnetism.OneDimVacuum.gaussLaw_iff
Mathematics ➗
Hide 3 TODO items:
TODO Item
(file : PhysLean.Mathematics.Distribution.Basic)For distributions, prove that the derivative fderivD commutes with integrals and sums. This may require defining the integral of families of distributions although it is expected this will follow from the definition of a distribution.
See on GitHub Tag: 01-09-25-JTSTODO Item
(file : PhysLean.Mathematics.FDerivCurry)Replace following helper lemmas with fun_prop after #24056 in Mathlib has gone through.
See on GitHub Tag: AZ2QNTODO Item
(file : PhysLean.Mathematics.LinearMaps)Replace the definitions in this file with Mathlib definitions.
See on GitHub Tag: 6VZLZMeta 🏛️
Hide 1 TODO items:
TODO Item
(file : PhysLean.Meta.TransverseTactics)Find a way to free the environment env in transverseTactics.
This leads to memory problems when using transverseTactics directly in loops.
Optics 🔍
Hide 0 TODO items:
Particles 💥
Hide 47 TODO items:
Informal definition
(GeorgiGlashow.GaugeGroupI)The gauge group of the Georgi-Glashow model, i.e., SU(5).
Informal definition
(GeorgiGlashow.inclSM)The homomorphism of the Standard Model gauge group into the Georgi-Glashow gauge group, i.e.,
the group homomorphism SU(3) × SU(2) × U(1) → SU(5) taking (h, g, α) to
blockdiag (α ^ 3 g, α ^ (-2) h).
See page 34 of https://math.ucr.edu/home/baez/guts.pdf
See on GitHub Tag: 6V2WSInformal Lemma
(GeorgiGlashow.inclSM_ker)The kernel of the map inclSM is equal to the subgroup StandardModel.gaugeGroupℤ₆SubGroup.
See page 34 of https://math.ucr.edu/home/baez/guts.pdf
See on GitHub Tag: 6V2W2Informal definition
(GeorgiGlashow.embedSMℤ₆)The group embedding from StandardModel.GaugeGroupℤ₆ to GaugeGroupI induced by inclSM by
quotienting by the kernel inclSM_ker.
Informal definition
(PatiSalam.GaugeGroupI)The gauge group of the Pati-Salam model (unquotiented by ℤ₂), i.e., SU(4) × SU(2) × SU(2).
Informal definition
(PatiSalam.inclSM)The homomorphism of the Standard Model gauge group into the Pati-Salam gauge group, i.e., the
group homomorphism SU(3) × SU(2) × U(1) → SU(4) × SU(2) × SU(2) taking (h, g, α) to
(blockdiag (α h, α ^ (-3)), g, diag (α ^ 3, α ^(-3)).
See page 54 of https://math.ucr.edu/home/baez/guts.pdf
See on GitHub Tag: 6V2RHInformal Lemma
(PatiSalam.inclSM_ker)The kernel of the map inclSM is equal to the subgroup StandardModel.gaugeGroupℤ₃SubGroup.
See footnote 10 of https://arxiv.org/pdf/2201.07245
See on GitHub Tag: 6V2RQInformal definition
(PatiSalam.embedSMℤ₃)The group embedding from StandardModel.GaugeGroupℤ₃ to GaugeGroupI induced by inclSM by
quotienting by the kernel inclSM_ker.
Informal definition
(PatiSalam.gaugeGroupISpinEquiv)The equivalence between GaugeGroupI and Spin(6) × Spin(4).
Informal definition
(PatiSalam.gaugeGroupℤ₂SubGroup)The ℤ₂-subgroup of the un-quotiented gauge group which acts trivially on all particles in the
standard model, i.e., the ℤ₂-subgroup of GaugeGroupI with the non-trivial element (-1, -1, -1).
See https://math.ucr.edu/home/baez/guts.pdf
See on GitHub Tag: 6V2SGInformal definition
(PatiSalam.GaugeGroupℤ₂)The gauge group of the Pati-Salam model with a ℤ₂ quotient, i.e., the quotient of GaugeGroupI
by the ℤ₂-subgroup gaugeGroupℤ₂SubGroup.
See https://math.ucr.edu/home/baez/guts.pdf
See on GitHub Tag: 6V2SMInformal Lemma
(PatiSalam.sm_ℤ₆_factor_through_gaugeGroupℤ₂SubGroup)The group StandardModel.gaugeGroupℤ₆SubGroup under the homomorphism embedSM factors through
the subgroup gaugeGroupℤ₂SubGroup.
Informal definition
(PatiSalam.embedSMℤ₆Toℤ₂)The group homomorphism from StandardModel.GaugeGroupℤ₆ to GaugeGroupℤ₂ induced by embedSM.
TODO Item
(file : PhysLean.Particles.BeyondTheStandardModel.RHN.AnomalyCancellation.Ordinary.DimSevenPlane)Remove the definitions of elements (SM 3).Charges B₀, B₁ etc, here are
use only B : Fin 7 → (SM 3).Charges.
Informal definition
(Spin10Model.GaugeGroupI)The gauge group of the Spin(10) model, i.e., the group Spin(10).
Informal definition
(Spin10Model.inclPatiSalam)The inclusion of the Pati-Salam gauge group into Spin(10), i.e., the lift of the embedding
SO(6) × SO(4) → SO(10) to universal covers, giving a homomorphism Spin(6) × Spin(4) → Spin(10).
Precomposed with the isomorphism, PatiSalam.gaugeGroupISpinEquiv, between SU(4) × SU(2) × SU(2)
and Spin(6) × Spin(4).
See page 56 of https://math.ucr.edu/home/baez/guts.pdf
See on GitHub Tag: 6V2YGInformal definition
(Spin10Model.inclSM)The inclusion of the Standard Model gauge group into Spin(10), i.e., the composition of
embedPatiSalam and PatiSalam.inclSM.
See page 56 of https://math.ucr.edu/home/baez/guts.pdf
See on GitHub Tag: 6V2YOInformal definition
(Spin10Model.inclGeorgiGlashow)The inclusion of the Georgi-Glashow gauge group into Spin(10), i.e., the Lie group homomorphism
from SU(n) → Spin(2n) discussed on page 46 of https://math.ucr.edu/home/baez/guts.pdf for n = 5.
Informal definition
(Spin10Model.inclSMThruGeorgiGlashow)The inclusion of the Standard Model gauge group into Spin(10), i.e., the composition of
inclGeorgiGlashow and GeorgiGlashow.inclSM.
Informal Lemma
(Spin10Model.inclSM_eq_inclSMThruGeorgiGlashow)The inclusion inclSM is equal to the inclusion inclSMThruGeorgiGlashow.
TODO Item
(file : PhysLean.Particles.BeyondTheStandardModel.TwoHDM.Basic)Within the definition of the 2HDM potential. The structure Potential should be
renamed to TwoHDM and moved out of the TwoHDM namespace.
Then toFun should be renamed to potential.
TODO Item
(file : PhysLean.Particles.BeyondTheStandardModel.TwoHDM.Basic)Prove bounded properties of the 2HDM potential. See e.g. https://inspirehep.net/literature/201299 and https://arxiv.org/pdf/hep-ph/0605184.
See on GitHub Tag: 6V2UDInformal Lemma
(TwoHDM.prodMatrix_invariant)The map prodMatrix is invariant under the simultaneous action of gaugeAction on the two
Higgs fields.
Informal Lemma
(TwoHDM.prodMatrix_to_higgsField)Given any smooth map f from spacetime to 2-by-2 complex matrices landing on positive
semi-definite matrices, there exist smooth Higgs fields Φ1 and Φ2 such that f is equal to
prodMatrix Φ1 Φ2.
See https://arxiv.org/pdf/hep-ph/0605184
See on GitHub Tag: 6V2V2TODO Item
(file : PhysLean.Particles.StandardModel.Basic)Redefine the gauge group as a quotient of SU(3) x SU(2) x U(1) by a subgroup of ℤ₆.
See on GitHub Tag: 6V2FPSorryful result
(file : StandardModel.gaugeGroupℤ₆SubGroup)See on GitHub Tag: StandardModel.gaugeGroupℤ₆SubGroup
Informal definition
(StandardModel.gaugeGroupℤ₂SubGroup)The ℤ₂subgroup of the un-quotiented gauge group which acts trivially on all particles in the
standard model, i.e., the ℤ₂-subgroup of GaugeGroupI derived from the ℤ₂ subgroup of
gaugeGroupℤ₆SubGroup.
See https://math.ucr.edu/home/baez/guts.pdf
See on GitHub Tag: 6V2GHInformal definition
(StandardModel.GaugeGroupℤ₂)The gauge group of the Standard Model with a ℤ₂ quotient, i.e., the quotient of GaugeGroupI by
the ℤ₂-subgroup gaugeGroupℤ₂SubGroup.
See https://math.ucr.edu/home/baez/guts.pdf
See on GitHub Tag: 6V2GOInformal definition
(StandardModel.gaugeGroupℤ₃SubGroup)The ℤ₃-subgroup of the un-quotiented gauge group which acts trivially on all particles in the
standard model, i.e., the ℤ₃-subgroup of GaugeGroupI derived from the ℤ₃ subgroup of
gaugeGroupℤ₆SubGroup.
See https://math.ucr.edu/home/baez/guts.pdf
See on GitHub Tag: 6V2GVInformal definition
(StandardModel.GaugeGroupℤ₃)The gauge group of the Standard Model with a ℤ₃-quotient, i.e., the quotient of GaugeGroupI by
the ℤ₃-subgroup gaugeGroupℤ₃SubGroup.
See https://math.ucr.edu/home/baez/guts.pdf
See on GitHub Tag: 6V2G3Informal definition
(StandardModel.GaugeGroup)The (global) gauge group of the Standard Model given a choice of quotient, i.e., the map from
GaugeGroupQuot to Type which gives the gauge group of the Standard Model for a given choice of
quotient.
See https://math.ucr.edu/home/baez/guts.pdf
See on GitHub Tag: 6V2HFInformal Lemma
(StandardModel.gaugeGroupI_lie)The gauge group GaugeGroupI is a Lie group.
Informal Lemma
(StandardModel.gaugeGroup_lie)For every q in GaugeGroupQuot the group GaugeGroup q is a Lie group.
Informal definition
(StandardModel.gaugeBundleI)The trivial principal bundle over SpaceTime with structure group GaugeGroupI.
Informal definition
(StandardModel.gaugeTransformI)A global section of gaugeBundleI.
Informal Lemma
(StandardModel.HiggsVec.stability_group_single)The Higgs boson breaks electroweak symmetry down to the electromagnetic force, i.e., the
stability group of the action of rep on ![0, Complex.ofReal ‖φ‖], for non-zero ‖φ‖, is the
SU(3) × U(1) subgroup of gaugeGroup := SU(3) × SU(2) × U(1) with the embedding given by
(g, e^{i θ}) ↦ (g, diag (e ^ {3 * i θ}, e ^ {- 3 * i θ}), e^{i θ}).
Informal Lemma
(StandardModel.HiggsVec.stability_group)The subgroup of gaugeGroup := SU(3) × SU(2) × U(1) which preserves every HiggsVec by the
action of StandardModel.HiggsVec.rep is given by SU(3) × ℤ₆ where ℤ₆ is the subgroup of
SU(2) × U(1) with elements (α^(-3) * I₂, α) where α is a sixth root of unity.
TODO Item
(file : PhysLean.Particles.StandardModel.HiggsBoson.Basic)Make HiggsBundle an associated bundle.
TODO Item
(file : PhysLean.Particles.StandardModel.HiggsBoson.Basic)Define the global gauge action on HiggsField.
See on GitHub Tag: 6V2MVTODO Item
(file : PhysLean.Particles.StandardModel.HiggsBoson.Basic)Prove ⟪φ1, φ2⟫_H invariant under the global gauge action. (norm_map_of_mem_unitary)
TODO Item
(file : PhysLean.Particles.StandardModel.HiggsBoson.Basic)Prove invariance of potential under global gauge action.
See on GitHub Tag: 6V2NAInformal definition
(StandardModel.HiggsField.gaugeAction)The action of gaugeTransformI on HiggsField acting pointwise through HiggsVec.rep.
Informal Lemma
(StandardModel.HiggsField.guage_orbit)There exists a g in gaugeTransformI such that gaugeAction g φ = φ' iff
φ(x)^† φ(x) = φ'(x)^† φ'(x).
Informal Lemma
(StandardModel.HiggsField.gauge_orbit_surject)For every smooth map f from SpaceTime to ℝ such that f is positive semidefinite, there
exists a Higgs field φ such that f = φ^† φ.
Informal Lemma
(StandardModel.HiggsField.Potential.isBounded_iff_of_𝓵_zero)When there is no quartic coupling, the potential is bounded iff the mass squared is
non-positive, i.e., for P : Potential then P.IsBounded iff P.μ2 ≤ 0. That is to say
- P.μ2 * ‖φ‖_H^2 x is bounded below iff P.μ2 ≤ 0.
TODO Item
(file : PhysLean.Particles.SuperSymmetry.SU5.ChargeSpectrum.PhenoClosed)Make the result viableChargesMultiset a safe definition, that is to
say proof that the recursion terminates.
QFT 🌊
Hide 16 TODO items:
TODO Item
(file : PhysLean.QFT.AnomalyCancellation.Basic)Replace ACCSystemChargesMk with ⟨n⟩ notation everywhere.
Sorryful result
(file : ACCSystemLinear.linSolsIncl_injective)See on GitHub Tag: ACCSystemLinear.linSolsIncl_injective
Sorryful result
(file : ACCSystemQuad.quadSolsInclLinSols_injective)See on GitHub Tag: ACCSystemQuad.quadSolsInclLinSols_injective
Sorryful result
(file : ACCSystemQuad.quadSolsIncl_injective)See on GitHub Tag: ACCSystemQuad.quadSolsIncl_injective
Sorryful result
(file : ACCSystem.solsInclQuadSols_injective)See on GitHub Tag: ACCSystem.solsInclQuadSols_injective
Sorryful result
(file : ACCSystem.solsInclLinSols_injective)See on GitHub Tag: ACCSystem.solsInclLinSols_injective
Sorryful result
(file : ACCSystem.solsIncl_injective)See on GitHub Tag: ACCSystem.solsIncl_injective
TODO Item
(file : PhysLean.QFT.AnomalyCancellation.Basic)Anomaly cancellation conditions can be derived formally from the gauge group and fermionic representations using e.g. topological invariants. Include such a definition.
See on GitHub Tag: 6VZMWTODO Item
(file : PhysLean.QFT.AnomalyCancellation.Basic)Anomaly cancellation conditions can be defined using algebraic varieties. Link such an approach to the approach here.
See on GitHub Tag: 6VZM3TODO Item
(file : PhysLean.QFT.PerturbationTheory.FieldOpFreeAlgebra.NormalOrder)Split the following two lemmas up into smaller parts.
See on GitHub Tag: 6V2JJTODO Item
(file : PhysLean.QFT.PerturbationTheory.WickAlgebra.Basic)The lemma bosonicProjF_mem_ideal has a proof which is really long.
We should either 1) split it up into smaller lemmas or 2) Put more comments into the proof.
Sorryful result
(file : WickContraction.Perm.isFull_of_isFull)See on GitHub Tag: WickContraction.Perm.isFull_of_isFull
Sorryful result
(file : WickContraction.Perm.perm_uncontractedList)See on GitHub Tag: WickContraction.Perm.perm_uncontractedList
TODO Item
(file : PhysLean.QFT.QED.AnomalyCancellation.Basic)The implementation of pure U(1) anomaly cancellation conditions is done
currently through the type ACCSystemCharges. This whole directory could be
simplified by refactoring to remove ACCSystemCharges defining PureU1Charges as
Fin n → ℚ directly, or this space quotiented by permutations and overall factors.
TODO Item
(file : PhysLean.QFT.QED.AnomalyCancellation.BasisLinear)The definition of coordinateMap here may be improved by replacing
Finsupp.equivFunOnFinite with Finsupp.linearEquivFunOnFinite. Investigate this.
TODO Item
(file : PhysLean.QFT.QED.AnomalyCancellation.Permutations)Remove pairSwap, and use the Mathlib defined function Equiv.swap instead.
Quantum Mechanics ⚛️
Hide 2 TODO items:
TODO Item
(file : PhysLean.QuantumMechanics.FiniteTarget.Basic)Define a smooth structure on FiniteTarget.
TODO Item
(file : PhysLean.QuantumMechanics.OneDimension.HarmonicOscillator.Basic)The momentum operator should be moved to a more general file.
See on GitHub Tag: 6VZH3Relativity ⏳
Hide 28 TODO items:
Informal Lemma
(complexLorentzTensor.contrBispinorUp_eq_metric_contr_contrBispinorDown){contrBispinorUp p | α β = εL | α α' ⊗ εR | β β'⊗ contrBispinorDown p | α' β' }ᵀ.
Proof: expand contrBispinorDown and use fact that metrics contract to the identity.
Informal Lemma
(complexLorentzTensor.coBispinorUp_eq_metric_contr_coBispinorDown){coBispinorUp p | α β = εL | α α' ⊗ εR | β β'⊗ coBispinorDown p | α' β' }ᵀ.
proof: expand coBispinorDown and use fact that metrics contract to the identity.
TODO Item
(file : PhysLean.Relativity.CliffordAlgebra)Prove algebra generated by gamma matrices is isomorphic to Clifford algebra.
See on GitHub Tag: 6VZF2TODO Item
(file : PhysLean.Relativity.LorentzAlgebra.Basis)Define the standard basis of the Lorentz algebra.
See on GitHub Tag: 6VZKATODO Item
(file : PhysLean.Relativity.LorentzGroup.Basic)Define the Lie group structure on the Lorentz group.
See on GitHub Tag: 6VZHMSorryful result
(file : LorentzGroup.generalizedBoost_timeComponent_eq)See on GitHub Tag: LorentzGroup.generalizedBoost_timeComponent_eq
TODO Item
(file : PhysLean.Relativity.LorentzGroup.Orthochronous.Basic)Prove topological properties of the Orthochronous Lorentz Group.
See on GitHub Tag: 6VZLOTODO Item
(file : PhysLean.Relativity.LorentzGroup.Restricted.Basic)Prove that every member of the restricted Lorentz group is combiniation of a boost and a rotation.
See on GitHub Tag: 6VZNPSemiformal result
(restricted_isConnected)The restricted Lorentz group is connected.
See on GitHub Tag: FXNL5Informal Lemma
(Lorentz.SL2C.toRestrictedLorentzGroup)The homomorphism from SL(2, ℂ) to the restricted Lorentz group.
TODO Item
(file : PhysLean.Relativity.SL2C.Basic)Define homomorphism from SL(2, ℂ) to the restricted Lorentz group.
TODO Item
(file : PhysLean.Relativity.Special.TwinParadox.Basic)Find the conditions for which the age gap for the twin paradox is zero.
See on GitHub Tag: 6V2UQInformal Lemma
(SpecialRelativity.InstantaneousTwinParadox.ageGap_nonneg)In the twin paradox with instantaneous acceleration, Twin A is always older then Twin B.
See on GitHub Tag: 7ROVETODO Item
(file : PhysLean.Relativity.Special.TwinParadox.Basic)Do the twin paradox with a non-instantaneous acceleration. This should be done in a different module.
See on GitHub Tag: 7ROQ4TODO Item
(file : PhysLean.Relativity.Tensors.Basic)We want to add inv_perserve_color to Simp database, however this fires the linter
simpVarHead. This should be investigated.
TODO Item
(file : PhysLean.Relativity.Tensors.Basic)Prove that if σ satisfies PermCond c c1 σ then PermCond.inv σ h
satisfies PermCond c1 c (PermCond.inv σ h).
TODO Item
(file : PhysLean.Relativity.Tensors.Color.Basic)In the definition equivToHomEq the tactic try {simp; decide}; try decide
can probably be made more efficient.
Informal definition
(IndexNotation.OverColor.forgetLift)The natural isomorphism between lift (C := C) ⋙ forget and
Functor.id (Discrete C ⥤ Rep k G).
Informal definition
(Fermion.rightHandedWeylAltEquiv)The linear equivalence between rightHandedWeyl and altRightHandedWeyl given by multiplying
an element of rightHandedWeyl by the matrix εᵃ⁰ᵃ¹ = !![0, 1; -1, 0]].
Informal Lemma
(Fermion.rightHandedWeylAltEquiv_equivariant)The linear equivalence rightHandedWeylAltEquiv is equivariant with respect to the action of
SL(2,C) on rightHandedWeyl and altRightHandedWeyl.
TODO Item
(file : PhysLean.Relativity.Tensors.Contraction.Pure)Prove lemmas relating to the commutation rules of dropPair and prodP.
TODO Item
(file : PhysLean.Relativity.Tensors.Evaluation)Add lemmas related to the interaction of evalT and permT, prodT and contrT.
See on GitHub Tag: 6VZ6GTODO Item
(file : PhysLean.Relativity.Tensors.RealTensor.Derivative)Prove that the derivative obeys the following equivariant
property with respect to the Lorentz group.
For a function f : ℝT(d, cm) → ℝT(d, cn) then
Λ • (∂ f (x)) = ∂ (fun x => Λ • f (Λ⁻¹ • x)) (Λ • x).
Sorryful result
(file : realLorentzTensor.toComplex_equivariant)See on GitHub Tag: realLorentzTensor.toComplex_equivariant
Informal Lemma
(realLorentzTensor.permT_toComplex)The map toComplex commutes with permT.
Informal Lemma
(realLorentzTensor.prodT_toComplex)The map toComplex commutes with prodT.
Informal Lemma
(realLorentzTensor.contrT_toComplex)The map toComplex commutes with contrT.
Informal Lemma
(realLorentzTensor.evalT_toComplex)The map toComplex commutes with evalT.
String Theory 🧵
Hide 0 TODO items:
Statistical Mechanics 🎲
Hide 3 TODO items:
TODO Item
(file : PhysLean.StatisticalMechanics.CanonicalEnsemble.TwoState)Generalize the results for the two-state canonical ensemble so that the two
states have arbitrary energies, rather than one state having energy 0.
Informal Lemma
(CanonicalEnsemble.twoState_entropy_eq)A simplification of the entropy of the two-state canonical ensemble.
Informal Lemma
(CanonicalEnsemble.twoState_helmholtzFreeEnergy_eq)A simplification of the helmholtzFreeEnergy of the two-state canonical ensemble.
Thermodynamics 🔥
Hide 0 TODO items:
Other ❓
Hide 13 TODO items:
TODO Item
(file : PhysLean.SpaceAndTime.Space.Basic)In the above documentation describe the notion of a type, and
introduce the type Space d.
TODO Item
(file : PhysLean.SpaceAndTime.Space.Basic)Convert Space from an abbrev to a def.
TODO Item
(file : PhysLean.SpaceAndTime.Space.Basic)In the above documentation describe what an instance is, and why
it is useful to have instances for Space d.
TODO Item
(file : PhysLean.SpaceAndTime.Space.Basic)After TODO ‘HB6VC’, give Space d the necessary instances
using inferInstanceAs.
TODO Item
(file : PhysLean.SpaceAndTime.Space.Basic)In the above documentation describe the notion of a basis in Lean.
See on GitHub Tag: HB6Z4TODO Item
(file : PhysLean.SpaceAndTime.Space.DistOfFunction)Add a general lemma specifying the derivative of functions from distributions.
See on GitHub Tag: LV5RMTODO Item
(file : PhysLean.SpaceAndTime.Space.LengthUnit)For each unit of charge give the reference the literature where it’s definition is defined.
See on GitHub Tag: ITXJVTODO Item
(file : PhysLean.SpaceAndTime.SpaceTime.Basic)SpaceTime should be refactored into a structure, or similar, to prevent casting.
See on GitHub Tag: 6V2DRInformal Lemma
(SpaceTime.space_equivariant)The function space is equivariant with respect to rotations.
TODO Item
(file : PhysLean.StringTheory.FTheory.SU5.Charges.OfRationalSection)The results in this file are currently stated, but not proved. They should should be proved following e.g. https://arxiv.org/pdf/1504.05593. This is a large project.
See on GitHub Tag: AETF6TODO Item
(file : PhysLean.Units.Basic)Make SI : UnitChoices computable, probably by replacing the axioms defining the units. See here: https://leanprover.zulipchat.com/#narrow/channel/479953-PhysLean/topic/physical.20units/near/534914807
See on GitHub Tag: LCSAYTODO Item
(file : PhysLean.Units.Examples)Add an example involving derivatives.
See on GitHub Tag: LCR7NTODO Item
(file : PhysLean.Units.WithDim.Basic)Induce instances on WithDim d M from instances on M.