TODO list
This file is created automatically using `TODO ...` commands within PhysLean. Feel free to tackle any of the items here.Classical Mechanics ⚙️
Hide 13 TODO items:
Semiformal result
(force)The force of the classical harmonic oscillator defined as - dU(x)/dx
where U(x)
is the potential energy.
Semiformal result
(force_is_linear)The force on the classical harmonic oscillator is - k x
.
Semiformal result
(EquationOfMotion)The definition of the equation of motion for the classical harmonic oscillator defined through the Euler-Lagrange equations.
See on GitHub Tag: 6ZTP5Semiformal result
(equationOfMotion_iff_newtons_second_law)The equations of motion are satisfied if and only if Newton’s second law holds.
See on GitHub Tag: 6YBEISemiformal result
(ExtremaOfAction)The proposition on a trajectory which is true if that trajectory is an extrema of the action.
semiformal implmentation notes:
- This is not expected to be easy to define.
Semiformal result
(equationOfMotion_iff_extremaOfAction)A trajectory x : ℝ → ℝ
satsifies the equation of motion if and only if
it is an extrema of the action.
Implementation note: This result depends on other semi-formal results which will need defining before this.
See on GitHub Tag: 6YBQHTODO Item
(file : PhysLean.ClassicalMechanics.HarmonicOscillator.Basic)Create a new folder for the damped harmonic oscillator, initially as a place-holder.
See on GitHub Tag: 6VZHCTODO Item
(file : PhysLean.ClassicalMechanics.HarmonicOscillator.Solution)Implement other initial condtions. For example:
- initial conditions at a given time.
- Two positions at different times.
- Two velocities at different times.
And convert them into the type
InitialConditions
above (which may need generalzing a bit to make this possible).
TODO Item
(file : PhysLean.ClassicalMechanics.HarmonicOscillator.Solution)For the classical harmonic oscillator find the time for which it returns to it’s initial position and velocity.
See on GitHub Tag: 6VZI3TODO Item
(file : PhysLean.ClassicalMechanics.HarmonicOscillator.Solution)For the classical harmonic oscillator find the times for which it passes through zero.
See on GitHub Tag: 6VZJBTODO Item
(file : PhysLean.ClassicalMechanics.HarmonicOscillator.Solution)For the classical harmonic oscillator find the velocity when it passes through zero.
See on GitHub Tag: 6VZJHSemiformal result
(sol_equationOfMotion)The solutions for any initial condition solve the equation of motion.
See on GitHub Tag: 6YATBSemiformal result
(sol_unique)The solutions to the equation of motion for a given set of initial conditions are unique.
Semiformal implmentation:
- One may needed the added condition of smoothness on
x
here. EquationOfMotion
needs defining before this can be proved.
Condensed Matter 🧊
Hide 0 TODO items:
Cosmology 🌌
Hide 10 TODO items:
Semiformal result
(SpatialGeometry)The inductive type with three constructors:
Spherical (k : ℝ)
Flat
Saddle (k : ℝ)
Semiformal result
(S)For s
corresponding to
Spherical k
,S s r = k * sin (r / k)
Flat
,S s r = r
,Saddle k
,S s r = k * sin (r / k)
.
Semiformal implementation note: There is likely a better name for this function.
See on GitHub Tag: 6ZZTVInformal Lemma
(Cosmology.SpatialGeometry.limit_S_saddle)The limit of S (Saddle k) r
as k → ∞
is equal to S (Flat) r
.
Informal Lemma
(Cosmology.SpatialGeometry.limit_S_sphere)The limit of S (Sphere k) r
as k → ∞
is equal to S (Flat) r
.
Semiformal result
(FLRW)The structure FLRW is defined to contain the physical parameters of the Friedmann-Lemaître-Robertson-Walker metric. That is, it contains
- The scale factor
a(t)
- An element of
SpatialGeometry
.
Semiformal implementation note: It is possible that we should restirct
a(t)
to be smooth or at least twice differentiable.
Informal definition
(Cosmology.FLRW.hubbleConstant)The hubble constant defined in terms of the scale factor
as (dₜ a) / a
.
The notation H
is used for the hubbleConstant
.
Semiformal implementation note: Implement also scoped notation.
See on GitHub Tag: 6Z2NBInformal definition
(Cosmology.FLRW.decelerationParameter)The deceleration parameter defined in terms of the scale factor
as - (dₜdₜ a) a / (dₜ a)^2
.
The notation q
is used for the decelerationParameter
.
Semiformal implementation note: Implement also scoped notation.
See on GitHub Tag: 6Z2UEInformal Lemma
(Cosmology.FLRW.decelerationParameter_eq_one_plus_hubbleConstant)The deceleration parameter is equal to - (1 + (dₜ H)/H^2)
.
Informal Lemma
(Cosmology.FLRW.time_evolution_hubbleConstant)The time evolution of the hubble parameter is equal to dₜ H = - H^2 (1 + q)
.
Informal Lemma
(Cosmology.FLRW.hubbleConstant_decrease_iff)There exists a time at which the hubble constant decreases if and only if
there exists a time where the deceleration parameter is less then -1
.
Electromagnetism ⚡
Hide 5 TODO items:
TODO Item
(file : PhysLean.Electromagnetism.FieldStrength.Basic)Define the dual field strength.
See on GitHub Tag: 6V2OUSemiformal result
(lorentzAction)The Lorentz action on the electric and magnetic fields.
See on GitHub Tag: 6WNUSSemiformal result
(toElectricMagneticField_equivariant)The equivalence toElectricMagneticField
is equivariant with respect to the
group action.
(In this semiformal result lorentzActionTemp
should be replaced with lorentzAction
.)
TODO Item
(file : PhysLean.Electromagnetism.MaxwellEquations)Charge density and current density should be generalized to signed measures, in such a way that they are still easy to work with and can be integrated with with tensor notation. See here: https://leanprover.zulipchat.com/#narrow/channel/479953-PhysLean/topic/Maxwell’s.20Equations
See on GitHub Tag: 6V2UZTODO Item
(file : PhysLean.Electromagnetism.MaxwellEquations)Show that if the charge density is spherically symmetric, then the electric field is also spherically symmetric.
See on GitHub Tag: 6V2VDMathematics ➗
Hide 1 TODO items:
TODO Item
(file : PhysLean.Mathematics.LinearMaps)Replace the definitions in this file with Mathlib definitions.
See on GitHub Tag: 6VZLZMeta 🏛️
Hide 1 TODO items:
TODO Item
(file : PhysLean.Meta.TransverseTactics)Find a way to free the environment env
in transverseTactics
.
This leads to memory problems when using transverseTactics
directly in loops.
Optics 🔍
Hide 0 TODO items:
Particles 💥
Hide 49 TODO items:
Informal definition
(GeorgiGlashow.GaugeGroupI)The gauge group of the Georgi-Glashow model, i.e., SU(5)
.
Informal definition
(GeorgiGlashow.inclSM)The homomorphism of the Standard Model gauge group into the Georgi-Glashow gauge group, i.e.,
the group homomorphism SU(3) × SU(2) × U(1) → SU(5)
taking (h, g, α)
to
blockdiag (α ^ 3 g, α ^ (-2) h)
.
See page 34 of https://math.ucr.edu/home/baez/guts.pdf
See on GitHub Tag: 6V2WSInformal Lemma
(GeorgiGlashow.inclSM_ker)The kernel of the map inclSM
is equal to the subgroup StandardModel.gaugeGroupℤ₆SubGroup
.
See page 34 of https://math.ucr.edu/home/baez/guts.pdf
See on GitHub Tag: 6V2W2Informal definition
(GeorgiGlashow.embedSMℤ₆)The group embedding from StandardModel.GaugeGroupℤ₆
to GaugeGroupI
induced by inclSM
by
quotienting by the kernel inclSM_ker
.
Informal definition
(PatiSalam.GaugeGroupI)The gauge group of the Pati-Salam model (unquotiented by ℤ₂), i.e., SU(4) × SU(2) × SU(2)
.
Informal definition
(PatiSalam.inclSM)The homomorphism of the Standard Model gauge group into the Pati-Salam gauge group, i.e., the
group homomorphism SU(3) × SU(2) × U(1) → SU(4) × SU(2) × SU(2)
taking (h, g, α)
to
(blockdiag (α h, α ^ (-3)), g, diag (α ^ 3, α ^(-3))
.
See page 54 of https://math.ucr.edu/home/baez/guts.pdf
See on GitHub Tag: 6V2RHInformal Lemma
(PatiSalam.inclSM_ker)The kernel of the map inclSM
is equal to the subgroup StandardModel.gaugeGroupℤ₃SubGroup
.
See footnote 10 of https://arxiv.org/pdf/2201.07245
See on GitHub Tag: 6V2RQInformal definition
(PatiSalam.embedSMℤ₃)The group embedding from StandardModel.GaugeGroupℤ₃
to GaugeGroupI
induced by inclSM
by
quotienting by the kernel inclSM_ker
.
Informal definition
(PatiSalam.gaugeGroupISpinEquiv)The equivalence between GaugeGroupI
and Spin(6) × Spin(4)
.
Informal definition
(PatiSalam.gaugeGroupℤ₂SubGroup)The ℤ₂-subgroup of the un-quotiented gauge group which acts trivially on all particles in the
standard model, i.e., the ℤ₂-subgroup of GaugeGroupI
with the non-trivial element (-1, -1, -1)
.
See https://math.ucr.edu/home/baez/guts.pdf
See on GitHub Tag: 6V2SGInformal definition
(PatiSalam.GaugeGroupℤ₂)The gauge group of the Pati-Salam model with a ℤ₂ quotient, i.e., the quotient of GaugeGroupI
by the ℤ₂-subgroup gaugeGroupℤ₂SubGroup
.
See https://math.ucr.edu/home/baez/guts.pdf
See on GitHub Tag: 6V2SMInformal Lemma
(PatiSalam.sm_ℤ₆_factor_through_gaugeGroupℤ₂SubGroup)The group StandardModel.gaugeGroupℤ₆SubGroup
under the homomorphism embedSM
factors through
the subgroup gaugeGroupℤ₂SubGroup
.
Informal definition
(PatiSalam.embedSMℤ₆Toℤ₂)The group homomorphism from StandardModel.GaugeGroupℤ₆
to GaugeGroupℤ₂
induced by embedSM
.
TODO Item
(file : PhysLean.Particles.BeyondTheStandardModel.RHN.AnomalyCancellation.Ordinary.DimSevenPlane)Remove the definitions of elements (SM 3).Charges
B₀, B₁ etc, here are
use only B : Fin 7 → (SM 3).Charges
.
Informal definition
(Spin10Model.GaugeGroupI)The gauge group of the Spin(10) model, i.e., the group Spin(10)
.
Informal definition
(Spin10Model.inclPatiSalam)The inclusion of the Pati-Salam gauge group into Spin(10), i.e., the lift of the embedding
SO(6) × SO(4) → SO(10)
to universal covers, giving a homomorphism Spin(6) × Spin(4) → Spin(10)
.
Precomposed with the isomorphism, PatiSalam.gaugeGroupISpinEquiv
, between SU(4) × SU(2) × SU(2)
and Spin(6) × Spin(4)
.
See page 56 of https://math.ucr.edu/home/baez/guts.pdf
See on GitHub Tag: 6V2YGInformal definition
(Spin10Model.inclSM)The inclusion of the Standard Model gauge group into Spin(10), i.e., the composition of
embedPatiSalam
and PatiSalam.inclSM
.
See page 56 of https://math.ucr.edu/home/baez/guts.pdf
See on GitHub Tag: 6V2YOInformal definition
(Spin10Model.inclGeorgiGlashow)The inclusion of the Georgi-Glashow gauge group into Spin(10), i.e., the Lie group homomorphism
from SU(n) → Spin(2n)
discussed on page 46 of https://math.ucr.edu/home/baez/guts.pdf for n = 5
.
Informal definition
(Spin10Model.inclSMThruGeorgiGlashow)The inclusion of the Standard Model gauge group into Spin(10), i.e., the composition of
inclGeorgiGlashow
and GeorgiGlashow.inclSM
.
Informal Lemma
(Spin10Model.inclSM_eq_inclSMThruGeorgiGlashow)The inclusion inclSM
is equal to the inclusion inclSMThruGeorgiGlashow
.
TODO Item
(file : PhysLean.Particles.BeyondTheStandardModel.TwoHDM.Basic)Within the definition of the 2HDM potential. The structure Potential
should be
renamed to TwoHDM and moved out of the TwoHDM namespace.
Then toFun
should be renamed to potential
.
TODO Item
(file : PhysLean.Particles.BeyondTheStandardModel.TwoHDM.Basic)Prove bounded properties of the 2HDM potential. See e.g. https://inspirehep.net/literature/201299 and https://arxiv.org/pdf/hep-ph/0605184.
See on GitHub Tag: 6V2UDInformal Lemma
(TwoHDM.prodMatrix_invariant)The map prodMatrix
is invariant under the simultaneous action of gaugeAction
on the two
Higgs fields.
Informal Lemma
(TwoHDM.prodMatrix_to_higgsField)Given any smooth map f
from spacetime to 2-by-2 complex matrices landing on positive
semi-definite matrices, there exist smooth Higgs fields Φ1
and Φ2
such that f
is equal to
prodMatrix Φ1 Φ2
.
See https://arxiv.org/pdf/hep-ph/0605184
See on GitHub Tag: 6V2V2TODO Item
(file : PhysLean.Particles.StandardModel.Basic)Redefine the gauge group as a quotient of SU(3) x SU(2) x U(1) by a subgroup of ℤ₆.
See on GitHub Tag: 6V2FPSemiformal result
(gaugeGroupℤ₆SubGroup)The subgroup of the un-quotiented gauge group which acts trivially on all particles in the
standard model, i.e., the ℤ₆-subgroup of GaugeGroupI
with elements (α^2 * I₃, α^(-3) * I₂, α)
,
where α
is a sixth complex root of unity.
See https://math.ucr.edu/home/baez/guts.pdf
See on GitHub Tag: 6V2FZSemiformal result
(GaugeGroupℤ₆)The smallest possible gauge group of the Standard Model, i.e., the quotient of GaugeGroupI
by
the ℤ₆-subgroup gaugeGroupℤ₆SubGroup
.
See https://math.ucr.edu/home/baez/guts.pdf
See on GitHub Tag: 6V2GAInformal definition
(StandardModel.gaugeGroupℤ₂SubGroup)The ℤ₂subgroup of the un-quotiented gauge group which acts trivially on all particles in the
standard model, i.e., the ℤ₂-subgroup of GaugeGroupI
derived from the ℤ₂ subgroup of
gaugeGroupℤ₆SubGroup
.
See https://math.ucr.edu/home/baez/guts.pdf
See on GitHub Tag: 6V2GHInformal definition
(StandardModel.GaugeGroupℤ₂)The gauge group of the Standard Model with a ℤ₂ quotient, i.e., the quotient of GaugeGroupI
by
the ℤ₂-subgroup gaugeGroupℤ₂SubGroup
.
See https://math.ucr.edu/home/baez/guts.pdf
See on GitHub Tag: 6V2GOInformal definition
(StandardModel.gaugeGroupℤ₃SubGroup)The ℤ₃-subgroup of the un-quotiented gauge group which acts trivially on all particles in the
standard model, i.e., the ℤ₃-subgroup of GaugeGroupI
derived from the ℤ₃ subgroup of
gaugeGroupℤ₆SubGroup
.
See https://math.ucr.edu/home/baez/guts.pdf
See on GitHub Tag: 6V2GVInformal definition
(StandardModel.GaugeGroupℤ₃)The gauge group of the Standard Model with a ℤ₃-quotient, i.e., the quotient of GaugeGroupI
by
the ℤ₃-subgroup gaugeGroupℤ₃SubGroup
.
See https://math.ucr.edu/home/baez/guts.pdf
See on GitHub Tag: 6V2G3Informal definition
(StandardModel.GaugeGroup)The (global) gauge group of the Standard Model given a choice of quotient, i.e., the map from
GaugeGroupQuot
to Type
which gives the gauge group of the Standard Model for a given choice of
quotient.
See https://math.ucr.edu/home/baez/guts.pdf
See on GitHub Tag: 6V2HFInformal Lemma
(StandardModel.gaugeGroupI_lie)The gauge group GaugeGroupI
is a Lie group.
Informal Lemma
(StandardModel.gaugeGroup_lie)For every q
in GaugeGroupQuot
the group GaugeGroup q
is a Lie group.
Informal definition
(StandardModel.gaugeBundleI)The trivial principal bundle over SpaceTime with structure group GaugeGroupI
.
Informal definition
(StandardModel.gaugeTransformI)A global section of gaugeBundleI
.
TODO Item
(file : PhysLean.Particles.StandardModel.HiggsBoson.Basic)Make HiggsBundle
an associated bundle.
Informal Lemma
(StandardModel.HiggsField.zero_is_zero_section)The zero Higgs field is the zero section of the Higgs bundle, i.e., the HiggsField zero
defined by ofReal 0
is the constant zero-section of the bundle HiggsBundle
.
TODO Item
(file : PhysLean.Particles.StandardModel.HiggsBoson.GaugeAction)Currently this only contains the action of the global gauge group. Generalize to include the full action of the gauge group.
See on GitHub Tag: 6V2LJInformal Lemma
(StandardModel.HiggsVec.guage_orbit)There exists a g
in GaugeGroupI
such that rep g φ = φ'
iff ‖φ‖ = ‖φ'‖
.
Informal Lemma
(StandardModel.HiggsVec.stability_group_single)The Higgs boson breaks electroweak symmetry down to the electromagnetic force, i.e., the
stability group of the action of rep
on ![0, Complex.ofReal ‖φ‖]
, for non-zero ‖φ‖
, is the
SU(3) × U(1)
subgroup of gaugeGroup := SU(3) × SU(2) × U(1)
with the embedding given by
(g, e^{i θ}) ↦ (g, diag (e ^ {3 * i θ}, e ^ {- 3 * i θ}), e^{i θ})
.
Informal Lemma
(StandardModel.HiggsVec.stability_group)The subgroup of gaugeGroup := SU(3) × SU(2) × U(1)
which preserves every HiggsVec
by the
action of StandardModel.HiggsVec.rep
is given by SU(3) × ℤ₆
where ℤ₆
is the subgroup of
SU(2) × U(1)
with elements (α^(-3) * I₂, α)
where α
is a sixth root of unity.
TODO Item
(file : PhysLean.Particles.StandardModel.HiggsBoson.GaugeAction)Define the global gauge action on HiggsField.
See on GitHub Tag: 6V2MVTODO Item
(file : PhysLean.Particles.StandardModel.HiggsBoson.GaugeAction)Prove ⟪φ1, φ2⟫_H
invariant under the global gauge action. (norm_map_of_mem_unitary)
TODO Item
(file : PhysLean.Particles.StandardModel.HiggsBoson.GaugeAction)Prove invariance of potential under global gauge action.
See on GitHub Tag: 6V2NAInformal definition
(StandardModel.HiggsField.gaugeAction)The action of gaugeTransformI
on HiggsField
acting pointwise through HiggsVec.rep
.
Informal Lemma
(StandardModel.HiggsField.guage_orbit)There exists a g
in gaugeTransformI
such that gaugeAction g φ = φ'
iff
φ(x)^† φ(x) = φ'(x)^† φ'(x)
.
Informal Lemma
(StandardModel.HiggsField.gauge_orbit_surject)For every smooth map f
from SpaceTime
to ℝ
such that f
is positive semidefinite, there
exists a Higgs field φ
such that f = φ^† φ
.
Informal Lemma
(StandardModel.HiggsField.Potential.isBounded_iff_of_𝓵_zero)When there is no quartic coupling, the potential is bounded iff the mass squared is
non-positive, i.e., for P : Potential
then P.IsBounded
iff P.μ2 ≤ 0
. That is to say
- P.μ2 * ‖φ‖_H^2 x
is bounded below iff P.μ2 ≤ 0
.
QFT 🌊
Hide 10 TODO items:
TODO Item
(file : PhysLean.QFT.AnomalyCancellation.Basic)Anomaly cancellation conditions can be derived formally from the gauge group and fermionic representations using e.g. topological invariants. Include such a definition.
See on GitHub Tag: 6VZMWTODO Item
(file : PhysLean.QFT.AnomalyCancellation.Basic)Anomaly cancellation conditions can be defined using algebraic varieties. Link such an approach to the approach here.
See on GitHub Tag: 6VZM3TODO Item
(file : PhysLean.QFT.PerturbationTheory.FieldOpFreeAlgebra.NormalOrder)Split the following two lemmas up into smaller parts.
See on GitHub Tag: 6V2JJTODO Item
(file : PhysLean.QFT.PerturbationTheory.WickAlgebra.Basic)The lemma bosonicProjF_mem_ideal
has a proof which is really long.
We should either 1) split it up into smaller lemmas or 2) Put more comments into the proof.
Semiformal result
(isFull_of_isFull)If Perm φsΛ₁ φsΛ₂
then if φsΛ₁
is a full Wick contraction
then φsΛ₂
is a full Wick contraction..
Implementation note: Please contact JTS before attempting this.
See on GitHub Tag: ABLGDSemiformal result
(perm_uncontractedList)If Perm φsΛ₁ φsΛ₂
then the uncontracted lists of
φsΛ₁
and φsΛ₂
are permutations of each other.
Implementation note: Please contact JTS before attempting this.
See on GitHub Tag: ABJD5TODO Item
(file : PhysLean.QFT.QED.AnomalyCancellation.BasisLinear)The definition of coordinateMap
here may be improved by replacing
Finsupp.equivFunOnFinite
with Finsupp.linearEquivFunOnFinite
. Investigate this.
TODO Item
(file : PhysLean.QFT.QED.AnomalyCancellation.Even.BasisLinear)Replace the definition of join
with a Mathlib definition, most likely Sum.elim
.
TODO Item
(file : PhysLean.QFT.QED.AnomalyCancellation.Odd.BasisLinear)Replace the definition of join
with a Mathlib definition, most likely Sum.elim
.
TODO Item
(file : PhysLean.QFT.QED.AnomalyCancellation.Permutations)Remove pairSwap
, and use the Mathlib defined function Equiv.swap
instead.
Quantum Mechanics ⚛️
Hide 2 TODO items:
TODO Item
(file : PhysLean.QuantumMechanics.FiniteTarget.Basic)Define a smooth structure on FiniteTarget
.
TODO Item
(file : PhysLean.QuantumMechanics.OneDimension.HarmonicOscillator.Basic)The momentum operator should be moved to a more general file.
See on GitHub Tag: 6VZH3Relativity ⏳
Hide 38 TODO items:
Informal Lemma
(complexLorentzTensor.contrBispinorUp_eq_metric_contr_contrBispinorDown){contrBispinorUp p | α β = εL | α α' ⊗ εR | β β'⊗ contrBispinorDown p | α' β' }ᵀ
.
Proof: expand contrBispinorDown
and use fact that metrics contract to the identity.
Informal Lemma
(complexLorentzTensor.coBispinorUp_eq_metric_contr_coBispinorDown){coBispinorUp p | α β = εL | α α' ⊗ εR | β β'⊗ coBispinorDown p | α' β' }ᵀ
.
proof: expand coBispinorDown
and use fact that metrics contract to the identity.
TODO Item
(file : PhysLean.Relativity.Lorentz.Algebra.Basis)Define the standard basis of the Lorentz algebra.
See on GitHub Tag: 6VZKATODO Item
(file : PhysLean.Relativity.Lorentz.Group.Basic)Define the Lie group structure on the Lorentz group.
See on GitHub Tag: 6VZHMTODO Item
(file : PhysLean.Relativity.Lorentz.Group.Boosts.Generalized)Make toLorentz
the definition of a generalised boost. This will involve
refactoring this file.
TODO Item
(file : PhysLean.Relativity.Lorentz.Group.Boosts.Generalized)Show that generalised boosts are in the restricted Lorentz group.
See on GitHub Tag: 6VZKUTODO Item
(file : PhysLean.Relativity.Lorentz.Group.Orthochronous)Prove topological properties of the Orthochronous Lorentz Group.
See on GitHub Tag: 6VZLOTODO Item
(file : PhysLean.Relativity.Lorentz.Group.Restricted)Add definition of the restricted Lorentz group.
See on GitHub Tag: 6VZNKTODO Item
(file : PhysLean.Relativity.Lorentz.Group.Restricted)Prove that every member of the restricted Lorentz group is combiniation of a boost and a rotation.
See on GitHub Tag: 6VZNPTODO Item
(file : PhysLean.Relativity.Lorentz.Group.Restricted)Prove restricted Lorentz group equivalent to connected component of identity of the Lorentz group.
See on GitHub Tag: 6VZNUInformal definition
(LorentzGroup.Restricted)The subgroup of the Lorentz group consisting of elements which are proper and orthochronous.
See on GitHub Tag: 6VZN7TODO Item
(file : PhysLean.Relativity.Lorentz.Group.Rotations)Generalize the inclusion of rotations into LorentzGroup to arbitrary dimension.
See on GitHub Tag: 6VZISInformal Lemma
(Lorentz.SL2C.toRestrictedLorentzGroup)The homomorphism from SL(2, ℂ)
to the restricted Lorentz group.
TODO Item
(file : PhysLean.Relativity.SL2C.Basic)Define homomorphism from SL(2, ℂ)
to the restricted Lorentz group.
TODO Item
(file : PhysLean.Relativity.SpaceTime.Basic)SpaceTime should be refactored into a structure, or similar, to prevent casting.
See on GitHub Tag: 6V2DRInformal Lemma
(SpaceTime.space_equivariant)The function space
is equivariant with respect to rotations.
TODO Item
(file : PhysLean.Relativity.SpaceTime.CliffordAlgebra)Prove algebra generated by gamma matrices is isomorphic to Clifford algebra.
See on GitHub Tag: 6VZF2TODO Item
(file : PhysLean.Relativity.Special.TwinParadox.Basic)Find the conditions for which the age gap for the twin paradox is zero.
See on GitHub Tag: 6V2UQInformal Lemma
(SpecialRelativity.InstantaneousTwinParadox.ageGap_nonneg)In the twin paradox with instantous acceleration, Twin A is always older then Twin B.
See on GitHub Tag: 7ROVETODO Item
(file : PhysLean.Relativity.Special.TwinParadox.Basic)Do the twin paradox with a non-instantaneous acceleration. This should be done in a different module.
See on GitHub Tag: 7ROQ4TODO Item
(file : PhysLean.Relativity.Tensors.Basic)We want to add inv_perserve_color
to Simp database, however this fires the linter
simpVarHead. This should be investigated.
TODO Item
(file : PhysLean.Relativity.Tensors.Basic)Prove that if σ
satifies PermCond c c1 σ
then PermCond.inv σ h
satifies PermCond c1 c (PermCond.inv σ h)
.
TODO Item
(file : PhysLean.Relativity.Tensors.Color.Basic)In the definition equivToHomEq the tactic try {simp; decide}; try decide
can probably be made more efficent.
Informal definition
(IndexNotation.OverColor.forgetLift)The natural isomorphism between lift (C := C) ⋙ forget
and
Functor.id (Discrete C ⥤ Rep k G)
.
Informal definition
(Fermion.rightHandedWeylAltEquiv)The linear equivalence between rightHandedWeyl
and altRightHandedWeyl
given by multiplying
an element of rightHandedWeyl
by the matrix εᵃ⁰ᵃ¹ = !![0, 1; -1, 0]]
.
Informal Lemma
(Fermion.rightHandedWeylAltEquiv_equivariant)The linear equivalence rightHandedWeylAltEquiv
is equivariant with respect to the action of
SL(2,C)
on rightHandedWeyl
and altRightHandedWeyl
.
TODO Item
(file : PhysLean.Relativity.Tensors.Contraction.Pure)Prove lemmas relating to the commutation rules of dropPair
and prodP
.
TODO Item
(file : PhysLean.Relativity.Tensors.Evaluation)Add lemmas related to the interaction of evalT and permT, prodT and contrT.
See on GitHub Tag: 6VZ6GTODO Item
(file : PhysLean.Relativity.Tensors.Product)Change products of tensors to use Fin.append
rather then
Sum.elim c c1 ∘ ⇑finSumFinEquiv.symm
.
TODO Item
(file : PhysLean.Relativity.Tensors.Product)Determine in prodEquiv_symm_pure
why in rw (transparency := .instances) [h1]
(transparency := .instances)
is needed. As a first step adding this as a comment here.
TODO Item
(file : PhysLean.Relativity.Tensors.RealTensor.Derivative)Prove that the derivative obeys the following equivariant
property with respect to the Lorentz group.
For a function f : ℝT(d, cm) → ℝT(d, cn)
then
Λ • (∂ f (x)) = ∂ (fun x => Λ • f (Λ⁻¹ • x)) (Λ • x)
.
Semiformal result
(toComplex)The semilinear map from real Lorentz tensors to complex Lorentz tensors.
Semiformal implmentation note: Probably the easist way to define this is through basis.
See on GitHub Tag: 7RJQJInformal Lemma
(realLorentzTensor.toComplex_injective)The map toComplex
is injective.
Informal Lemma
(realLorentzTensor.toComplex_equivariant)The map toComplex
is equivariant.
Informal Lemma
(realLorentzTensor.permT_toComplex)The map toComplex
commutes with permT.
Informal Lemma
(realLorentzTensor.prodT_toComplex)The map toComplex
commutes with prodT.
Informal Lemma
(realLorentzTensor.contrT_toComplex)The map toComplex
commutes with contrT.
Informal Lemma
(realLorentzTensor.evalT_toComplex)The map toComplex
commutes with evalT.
String Theory 🧵
Hide 0 TODO items:
Statistical Mechanics 🎲
Hide 0 TODO items:
Thermodynamics 🔥
Hide 0 TODO items:
Other ❓
Hide 1 TODO items:
TODO Item
(file : PhysLean.StringTheory.FTheory.SU5U1.Charges)The results in this file are currently stated, but not proved. They should should be proved following e.g. https://arxiv.org/pdf/1504.05593. This is a large project.
See on GitHub Tag: AETF6