PhysLean Documentation

PhysLean.Relativity.SL2C.Basic

The group SL(2, ℂ) and it's relation to the Lorentz group #

The aim of this file is to give the relationship between SL(2, ℂ) and the Lorentz group.

Some basic properties about SL(2, ℂ) #

Possibly to be moved to mathlib at some point.

Representation of SL(2, ℂ) on spacetime #

Through the correspondence between spacetime and self-adjoint matrices, we can define a representation a representation of SL(2, ℂ) on spacetime.

Given an element M ∈ SL(2, ℂ) the linear map from selfAdjoint (Matrix (Fin 2) (Fin 2) ℂ) to itself defined by A ↦ M * A * Mᴴ.

Equations
Instances For
    theorem Lorentz.SL2C.toSelfAdjointMap_apply_pauliBasis'_inl (M : Matrix.SpecialLinearGroup (Fin 2) ) :
    (toSelfAdjointMap M) (PauliMatrix.pauliBasis' (Sum.inl 0)) = ((M 0 0 ^ 2 + M 0 1 ^ 2 + M 1 0 ^ 2 + M 1 1 ^ 2) / 2) PauliMatrix.pauliBasis' (Sum.inl 0) + -((M 0 1).re * (M 1 1).re + (M 0 1).im * (M 1 1).im + (M 0 0).im * (M 1 0).im + (M 0 0).re * (M 1 0).re) PauliMatrix.pauliBasis' (Sum.inr 0) + (-(M 0 0).re * (M 1 0).im + (M 1 0).re * (M 0 0).im - (M 0 1).re * (M 1 1).im + (M 0 1).im * (M 1 1).re) PauliMatrix.pauliBasis' (Sum.inr 1) + ((-M 0 0 ^ 2 - M 0 1 ^ 2 + M 1 0 ^ 2 + M 1 1 ^ 2) / 2) PauliMatrix.pauliBasis' (Sum.inr 2)

    The monoid homomorphisms from SL(2, ℂ) to matrices indexed by Fin 1 ⊕ Fin 3 formed by the action M A Mᴴ.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For

      The group homomorphism from SL(2, ℂ) to the Lorentz group 𝓛.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        theorem Lorentz.SL2C.toLorentzGroup_fst_col (M : Matrix.SpecialLinearGroup (Fin 2) ) :
        (fun (μ : Fin 1 Fin 3) => (toLorentzGroup M) μ (Sum.inl 0)) = fun (μ : Fin 1 Fin 3) => match μ with | Sum.inl 0 => (M 0 0 ^ 2 + M 0 1 ^ 2 + M 1 0 ^ 2 + M 1 1 ^ 2) / 2 | Sum.inr 0 => -((M 0 1).re * (M 1 1).re + (M 0 1).im * (M 1 1).im + (M 0 0).im * (M 1 0).im + (M 0 0).re * (M 1 0).re) | Sum.inr 1 => -(M 0 0).re * (M 1 0).im + (M 1 0).re * (M 0 0).im - (M 0 1).re * (M 1 1).im + (M 0 1).im * (M 1 1).re | Sum.inr 2 => (-M 0 0 ^ 2 - M 0 1 ^ 2 + M 1 0 ^ 2 + M 1 1 ^ 2) / 2

        The first column of the Lorentz matrix formed from an element of SL(2, ℂ).

        theorem Lorentz.SL2C.toLorentzGroup_inl_inl (M : Matrix.SpecialLinearGroup (Fin 2) ) :
        (toLorentzGroup M) (Sum.inl 0) (Sum.inl 0) = (M 0 0 ^ 2 + M 0 1 ^ 2 + M 1 0 ^ 2 + M 1 1 ^ 2) / 2

        The first element of the image of SL(2, ℂ) in the Lorentz group.

        The image of SL(2, ℂ) in the Lorentz group is orthochronous.

        Homomorphism to the restricted Lorentz group #

        The homomorphism toLorentzGroup restricts to a homomorphism to the restricted Lorentz group. In this section we will define this homomorphism.

        The determinant of the image of SL(2, ℂ) in the Lorentz group is one.