PhysLean Documentation

PhysLean.Relativity.PauliMatrices.SelfAdjoint

Interaction of Pauli matrices with self-adjoint matrices #

theorem PauliMatrix.trace_pauliMatrix_mul_selfAdjoint_re (μ : Fin 1 Fin 3) (A : (selfAdjoint (Matrix (Fin 2) (Fin 2) ))) :
(pauliMatrix μ * A).trace.re = (pauliMatrix μ * A).trace

The trace of a pauli-matrix multiplied by a self-adjoint 2×2 matrix is real.

theorem PauliMatrix.selfAdjoint_ext_complex {A B : (selfAdjoint (Matrix (Fin 2) (Fin 2) ))} (h0 : (pauliMatrix (Sum.inl 0) * A).trace = (pauliMatrix (Sum.inl 0) * B).trace) (h1 : (pauliMatrix (Sum.inr 0) * A).trace = (pauliMatrix (Sum.inr 0) * B).trace) (h2 : (pauliMatrix (Sum.inr 1) * A).trace = (pauliMatrix (Sum.inr 1) * B).trace) (h3 : (pauliMatrix (Sum.inr 2) * A).trace = (pauliMatrix (Sum.inr 2) * B).trace) :
A = B

Two 2×2 self-adjoint matrices are equal if the (complex) traces of each matrix multiplied by each of the Pauli-matrices are equal.

theorem PauliMatrix.selfAdjoint_ext {A B : (selfAdjoint (Matrix (Fin 2) (Fin 2) ))} (h0 : (pauliMatrix (Sum.inl 0) * A).trace.re = (pauliMatrix (Sum.inl 0) * B).trace.re) (h1 : (pauliMatrix (Sum.inr 0) * A).trace.re = (pauliMatrix (Sum.inr 0) * B).trace.re) (h2 : (pauliMatrix (Sum.inr 1) * A).trace.re = (pauliMatrix (Sum.inr 1) * B).trace.re) (h3 : (pauliMatrix (Sum.inr 2) * A).trace.re = (pauliMatrix (Sum.inr 2) * B).trace.re) :
A = B

Two 2×2 self-adjoint matrices are equal if the real traces of each matrix multiplied by each of the Pauli-matrices are equal.

An auxiliary function which on i : Fin 1 ⊕ Fin 3 returns the corresponding Pauli-matrix as a self-adjoint matrix.

Equations
Instances For

    The Pauli matrices span all self-adjoint matrices.

    The Pauli matrices where σi are negated are linearly independent.

    The Pauli matrices where σi are negated span all Self-adjoint matrices.

    The basis of selfAdjoint (Matrix (Fin 2) (Fin 2) ℂ) formed by Pauli matrices where the 1, 2, 3 pauli matrices are negated. These can be thought of as the covariant Pauli-matrices.

    Equations
    Instances For
      theorem PauliMatrix.pauliBasis'_decomp (M : (selfAdjoint (Matrix (Fin 2) (Fin 2) ))) :
      M = (1 / 2 * (pauliMatrix (Sum.inl 0) * M).trace.re) pauliBasis' (Sum.inl 0) + (-1 / 2 * (pauliMatrix (Sum.inr 0) * M).trace.re) pauliBasis' (Sum.inr 0) + (-1 / 2 * (pauliMatrix (Sum.inr 1) * M).trace.re) pauliBasis' (Sum.inr 1) + (-1 / 2 * (pauliMatrix (Sum.inr 2) * M).trace.re) pauliBasis' (Sum.inr 2)

      The decomposition of a self-adjoint matrix into the Pauli matrices (where σi are negated).

      @[simp]
      theorem PauliMatrix.pauliBasis'_repr_inl_0 (M : (selfAdjoint (Matrix (Fin 2) (Fin 2) ))) :
      ((pauliBasis'.repr M) (Sum.inl 0)) = 1 / 2 * (pauliMatrix (Sum.inl 0) * M).trace

      The component of a self-adjoint matrix in the direction σ0 under the basis formed by the covariant Pauli matrices.

      @[simp]
      theorem PauliMatrix.pauliBasis'_repr_inr_0 (M : (selfAdjoint (Matrix (Fin 2) (Fin 2) ))) :
      ((pauliBasis'.repr M) (Sum.inr 0)) = -1 / 2 * (pauliMatrix (Sum.inr 0) * M).trace

      The component of a self-adjoint matrix in the direction -σ1 under the basis formed by the covariant Pauli matrices.

      @[simp]
      theorem PauliMatrix.pauliBasis'_repr_inr_1 (M : (selfAdjoint (Matrix (Fin 2) (Fin 2) ))) :
      ((pauliBasis'.repr M) (Sum.inr 1)) = -1 / 2 * (pauliMatrix (Sum.inr 1) * M).trace

      The component of a self-adjoint matrix in the direction -σ2 under the basis formed by the covariant Pauli matrices.

      @[simp]
      theorem PauliMatrix.pauliBasis'_repr_inr_2 (M : (selfAdjoint (Matrix (Fin 2) (Fin 2) ))) :
      ((pauliBasis'.repr M) (Sum.inr 2)) = -1 / 2 * (pauliMatrix (Sum.inr 2) * M).trace

      The component of a self-adjoint matrix in the direction -σ3 under the basis formed by the covariant Pauli matrices.

      The relationship between the basis pauliBasis of contravariant Pauli-matrices and the basis pauliBasis' of covariant Pauli matrices is by multiplication by the Minkowski matrix.