PhysLean Documentation

PhysLean.Particles.BeyondTheStandardModel.TwoHDM.GramMatrix

The gram matrix for the two Higgs doublet model #

The main reference for material in this section is https://arxiv.org/pdf/hep-ph/0605184.

We will show that the gram matrix of the two Higgs doublet model describes the gauge orbits of the configuration space.

A. The Gram matrix #

noncomputable def TwoHiggsDoublet.gramMatrix (H : TwoHiggsDoublet) :
Matrix (Fin 2) (Fin 2)

The Gram matrix of the two Higgs doublet. This matrix is used in https://arxiv.org/abs/hep-ph/0605184.

Equations
Instances For

    A.1. Gram matrix is surjective #

    theorem TwoHiggsDoublet.gramMatrix_surjective_det_tr (K : Matrix (Fin 2) (Fin 2) ) (hKs : IsSelfAdjoint K) (hKdet : 0 K.det.re) (hKtr : 0 K.trace.re) :

    B. The Gram vector #

    noncomputable def TwoHiggsDoublet.gramVector (H : TwoHiggsDoublet) :
    Fin 1 Fin 3

    A real vector containing the components of the Gram matrix in the Pauli basis.

    Equations
    Instances For
      theorem TwoHiggsDoublet.gramMatrix_eq_component_gramVector (H : TwoHiggsDoublet) :
      H.gramMatrix = !![1 / 2 * ((H.gramVector (Sum.inl 0)) + (H.gramVector (Sum.inr 2))), 1 / 2 * ((H.gramVector (Sum.inr 0)) - Complex.I * (H.gramVector (Sum.inr 1))); 1 / 2 * ((H.gramVector (Sum.inr 0)) + Complex.I * (H.gramVector (Sum.inr 1))), 1 / 2 * ((H.gramVector (Sum.inl 0)) - (H.gramVector (Sum.inr 2)))]
      theorem TwoHiggsDoublet.gramVector_surjective (v : Fin 1 Fin 3) (h_inl : 0 v (Sum.inl 0)) (h_det : μ : Fin 3, v (Sum.inr μ) ^ 2 v (Sum.inl 0) ^ 2) :