The gram matrix for the two Higgs doublet model #
The main reference for material in this section is https://arxiv.org/pdf/hep-ph/0605184.
We will show that the gram matrix of the two Higgs doublet model describes the gauge orbits of the configuration space.
A. The Gram matrix #
The Gram matrix of the two Higgs doublet. This matrix is used in https://arxiv.org/abs/hep-ph/0605184.
Equations
Instances For
theorem
TwoHiggsDoublet.eq_fst_norm_of_eq_gramMatrix
{H1 H2 : TwoHiggsDoublet}
(h : H1.gramMatrix = H2.gramMatrix)
:
theorem
TwoHiggsDoublet.eq_snd_norm_of_eq_gramMatrix
{H1 H2 : TwoHiggsDoublet}
(h : H1.gramMatrix = H2.gramMatrix)
:
@[simp]
theorem
TwoHiggsDoublet.gaugeGroupI_smul_gramMatrix
(g : StandardModel.GaugeGroupI)
(H : TwoHiggsDoublet)
:
A.1. Gram matrix is surjective #
theorem
TwoHiggsDoublet.gramMatrix_surjective_det_tr
(K : Matrix (Fin 2) (Fin 2) ℂ)
(hKs : IsSelfAdjoint K)
(hKdet : 0 ≤ K.det.re)
(hKtr : 0 ≤ K.trace.re)
:
∃ (H : TwoHiggsDoublet), H.gramMatrix = K
B. The Gram vector #
A real vector containing the components of the Gram matrix in the Pauli basis.
Equations
- H.gramVector μ = 2 * (PauliMatrix.pauliBasis.repr ⟨H.gramMatrix, ⋯⟩) μ
Instances For
@[simp]
theorem
TwoHiggsDoublet.gaugeGroupI_smul_fst_gramVector
(g : StandardModel.GaugeGroupI)
(H : TwoHiggsDoublet)
(μ : Fin 1 ⊕ Fin 3)
:
theorem
TwoHiggsDoublet.gramMatrix_eq_component_gramVector
(H : TwoHiggsDoublet)
:
H.gramMatrix = !![1 / 2 * (↑(H.gramVector (Sum.inl 0)) + ↑(H.gramVector (Sum.inr 2))),
1 / 2 * (↑(H.gramVector (Sum.inr 0)) - Complex.I * ↑(H.gramVector (Sum.inr 1)));
1 / 2 * (↑(H.gramVector (Sum.inr 0)) + Complex.I * ↑(H.gramVector (Sum.inr 1))),
1 / 2 * (↑(H.gramVector (Sum.inl 0)) - ↑(H.gramVector (Sum.inr 2)))]
theorem
TwoHiggsDoublet.gramMatrix_det_eq_gramVector
(H : TwoHiggsDoublet)
:
H.gramMatrix.det.re = 1 / 4 * (H.gramVector (Sum.inl 0) ^ 2 - ∑ μ : Fin 3, H.gramVector (Sum.inr μ) ^ 2)