Boosts on the electric and magnetic fields #
i. Overview #
We find the transformations of the electric and magnetic field matrix under
boosts in the 'x' direction. We do this in full-generality for d+1 space dimensions.
ii. Key results #
electricField_apply_x_boost_zero: The transformation of the x-component of the electric field under a boost in the 'x' direction.electricField_apply_x_boost_succ: The transformation of the other components of the electric field under a boost in the 'x' direction.magneticFieldMatrix_apply_x_boost_zero_succ: The transformation of the 'x-components' of the magnetic field matrix under a boost in the 'x' directionmagneticFieldMatrix_apply_x_boost_succ_succ: The transformation of the other components of the magnetic field matrix under a boost in the 'x' direction.
iii. Table of contents #
- A. Boost of the electric field
- A.1. Boost of the x-component of the electric field
- A.2. Boost of other components of the electric field
- B. Boost of the magnetic field
- B.1. Boost of the 'x-components' of the magnetic field matrix
- B.2. Boost of the other components of the magnetic field matrix
iv. References #
See e.g.
A. Boost of the electric field #
A.1. Boost of the x-component of the electric field #
theorem
Electromagnetism.ElectromagneticPotential.electricField_apply_x_boost_zero
{d : ℕ}
{c : SpeedOfLight}
(β : ℝ)
(hβ : |β| < 1)
(A : ElectromagneticPotential d.succ)
(hA : Differentiable ℝ A)
(t : Time)
(x : Space d.succ)
:
have Λ := LorentzGroup.boost 0 β hβ;
have t' := { val := LorentzGroup.γ β * (t.val + β / c.val * x 0) };
have x' := fun (x_1 : Fin d.succ) =>
match x_1 with
| ⟨0, ⋯⟩ => LorentzGroup.γ β * (x 0 + c.val * β * t.val)
| ⟨n.succ, ih⟩ => x ⟨n.succ, ih⟩;
electricField c (fun (x : SpaceTime d.succ) => Λ • A (Λ⁻¹ • x)) t x 0 = electricField c A t' x' 0
A.2. Boost of other components of the electric field #
theorem
Electromagnetism.ElectromagneticPotential.electricField_apply_x_boost_succ
{d : ℕ}
{c : SpeedOfLight}
(β : ℝ)
(hβ : |β| < 1)
(A : ElectromagneticPotential d.succ)
(hA : Differentiable ℝ A)
(t : Time)
(x : Space d.succ)
(i : Fin d)
:
have Λ := LorentzGroup.boost 0 β hβ;
have t' := { val := LorentzGroup.γ β * (t.val + β / c.val * x 0) };
have x' := fun (x_1 : Fin d.succ) =>
match x_1 with
| ⟨0, ⋯⟩ => LorentzGroup.γ β * (x 0 + c.val * β * t.val)
| ⟨n.succ, ih⟩ => x ⟨n.succ, ih⟩;
electricField c (fun (x : SpaceTime d.succ) => Λ • A (Λ⁻¹ • x)) t x i.succ = LorentzGroup.γ β * (electricField c A t' x' i.succ + c.val * β * magneticFieldMatrix c A t' x' (0, i.succ))
B. Boost of the magnetic field #
B.1. Boost of the 'x-components' of the magnetic field matrix #
theorem
Electromagnetism.ElectromagneticPotential.magneticFieldMatrix_apply_x_boost_zero_succ
{d : ℕ}
{c : SpeedOfLight}
(β : ℝ)
(hβ : |β| < 1)
(A : ElectromagneticPotential d.succ)
(hA : Differentiable ℝ A)
(t : Time)
(x : Space d.succ)
(i : Fin d)
:
have Λ := LorentzGroup.boost 0 β hβ;
have t' := { val := LorentzGroup.γ β * (t.val + β / c.val * x 0) };
have x' := fun (x_1 : Fin d.succ) =>
match x_1 with
| ⟨0, ⋯⟩ => LorentzGroup.γ β * (x 0 + c.val * β * t.val)
| ⟨n.succ, ih⟩ => x ⟨n.succ, ih⟩;
magneticFieldMatrix c (fun (x : SpaceTime d.succ) => Λ • A (Λ⁻¹ • x)) t x (0, i.succ) = LorentzGroup.γ β * (magneticFieldMatrix c A t' x' (0, i.succ) + β / c.val * electricField c A t' x' i.succ)
B.2. Boost of the other components of the magnetic field matrix #
theorem
Electromagnetism.ElectromagneticPotential.magneticFieldMatrix_apply_x_boost_succ_succ
{d : ℕ}
{c : SpeedOfLight}
(β : ℝ)
(hβ : |β| < 1)
(A : ElectromagneticPotential d.succ)
(hA : Differentiable ℝ A)
(t : Time)
(x : Space d.succ)
(i j : Fin d)
:
have Λ := LorentzGroup.boost 0 β hβ;
have t' := { val := LorentzGroup.γ β * (t.val + β / c.val * x 0) };
have x' := fun (x_1 : Fin d.succ) =>
match x_1 with
| ⟨0, ⋯⟩ => LorentzGroup.γ β * (x 0 + c.val * β * t.val)
| ⟨n.succ, ih⟩ => x ⟨n.succ, ih⟩;
magneticFieldMatrix c (fun (x : SpaceTime d.succ) => Λ • A (Λ⁻¹ • x)) t x (i.succ, j.succ) = magneticFieldMatrix c A t' x' (i.succ, j.succ)