PhysLean Documentation

PhysLean.Electromagnetism.Kinematics.Boosts

Boosts on the electric and magnetic fields #

i. Overview #

We find the transformations of the electric and magnetic field matrix under boosts in the 'x' direction. We do this in full-generality for d+1 space dimensions.

ii. Key results #

iii. Table of contents #

iv. References #

See e.g.

A. Boost of the electric field #

A.1. Boost of the x-component of the electric field #

theorem Electromagnetism.ElectromagneticPotential.electricField_apply_x_boost_zero {d : } {c : SpeedOfLight} (β : ) ( : |β| < 1) (A : ElectromagneticPotential d.succ) (hA : Differentiable A) (t : Time) (x : Space d.succ) :
have Λ := LorentzGroup.boost 0 β ; have t' := { val := LorentzGroup.γ β * (t.val + β / c.val * x 0) }; have x' := fun (x_1 : Fin d.succ) => match x_1 with | 0, => LorentzGroup.γ β * (x 0 + c.val * β * t.val) | n.succ, ih => x n.succ, ih; electricField c (fun (x : SpaceTime d.succ) => Λ A (Λ⁻¹ x)) t x 0 = electricField c A t' x' 0

A.2. Boost of other components of the electric field #

theorem Electromagnetism.ElectromagneticPotential.electricField_apply_x_boost_succ {d : } {c : SpeedOfLight} (β : ) ( : |β| < 1) (A : ElectromagneticPotential d.succ) (hA : Differentiable A) (t : Time) (x : Space d.succ) (i : Fin d) :
have Λ := LorentzGroup.boost 0 β ; have t' := { val := LorentzGroup.γ β * (t.val + β / c.val * x 0) }; have x' := fun (x_1 : Fin d.succ) => match x_1 with | 0, => LorentzGroup.γ β * (x 0 + c.val * β * t.val) | n.succ, ih => x n.succ, ih; electricField c (fun (x : SpaceTime d.succ) => Λ A (Λ⁻¹ x)) t x i.succ = LorentzGroup.γ β * (electricField c A t' x' i.succ + c.val * β * magneticFieldMatrix c A t' x' (0, i.succ))

B. Boost of the magnetic field #

B.1. Boost of the 'x-components' of the magnetic field matrix #

theorem Electromagnetism.ElectromagneticPotential.magneticFieldMatrix_apply_x_boost_zero_succ {d : } {c : SpeedOfLight} (β : ) ( : |β| < 1) (A : ElectromagneticPotential d.succ) (hA : Differentiable A) (t : Time) (x : Space d.succ) (i : Fin d) :
have Λ := LorentzGroup.boost 0 β ; have t' := { val := LorentzGroup.γ β * (t.val + β / c.val * x 0) }; have x' := fun (x_1 : Fin d.succ) => match x_1 with | 0, => LorentzGroup.γ β * (x 0 + c.val * β * t.val) | n.succ, ih => x n.succ, ih; magneticFieldMatrix c (fun (x : SpaceTime d.succ) => Λ A (Λ⁻¹ x)) t x (0, i.succ) = LorentzGroup.γ β * (magneticFieldMatrix c A t' x' (0, i.succ) + β / c.val * electricField c A t' x' i.succ)

B.2. Boost of the other components of the magnetic field matrix #

theorem Electromagnetism.ElectromagneticPotential.magneticFieldMatrix_apply_x_boost_succ_succ {d : } {c : SpeedOfLight} (β : ) ( : |β| < 1) (A : ElectromagneticPotential d.succ) (hA : Differentiable A) (t : Time) (x : Space d.succ) (i j : Fin d) :
have Λ := LorentzGroup.boost 0 β ; have t' := { val := LorentzGroup.γ β * (t.val + β / c.val * x 0) }; have x' := fun (x_1 : Fin d.succ) => match x_1 with | 0, => LorentzGroup.γ β * (x 0 + c.val * β * t.val) | n.succ, ih => x n.succ, ih; magneticFieldMatrix c (fun (x : SpaceTime d.succ) => Λ A (Λ⁻¹ x)) t x (i.succ, j.succ) = magneticFieldMatrix c A t' x' (i.succ, j.succ)