The Classical Harmonic Oscillator #
The solution for given initial conditions #
theorem
ClassicalMechanics.HarmonicOscillator.InitialConditions.ext
{IC₁ IC₂ : InitialConditions}
(h1 : IC₁.x₀ = IC₂.x₀)
(h2 : IC₁.v₀ = IC₂.v₀)
:
The zero initial condition #
The zero initial condition.
Equations
- ClassicalMechanics.HarmonicOscillator.zeroIC = { x₀ := 0, v₀ := 0 }
Instances For
The solution #
For zero initial conditions, the solution is zero.
noncomputable def
ClassicalMechanics.HarmonicOscillator.amplitude
(S : HarmonicOscillator)
(IC : InitialConditions)
:
Given initial conditions, the amplitude of the classical harmonic oscillator.
Instances For
theorem
ClassicalMechanics.HarmonicOscillator.amplitude_eq
(S : HarmonicOscillator)
(IC : InitialConditions)
:
@[simp]
theorem
ClassicalMechanics.HarmonicOscillator.amplitude_nonneg
(S : HarmonicOscillator)
(IC : InitialConditions)
:
The amplitude of the classical harmonic oscillator is non-negative.
theorem
ClassicalMechanics.HarmonicOscillator.amplitude_sq
(S : HarmonicOscillator)
(IC : InitialConditions)
:
@[simp]
theorem
ClassicalMechanics.HarmonicOscillator.amplitude_eq_zero_iff_IC_eq_zeroIC
(S : HarmonicOscillator)
(IC : InitialConditions)
:
The amplitude is zero if and only if the inital conditions are zero.
noncomputable def
ClassicalMechanics.HarmonicOscillator.phase
(S : HarmonicOscillator)
(IC : InitialConditions)
:
Given initial conditions, the phase of the classical harmonic oscillator.
Instances For
theorem
ClassicalMechanics.HarmonicOscillator.phase_le_pi
(S : HarmonicOscillator)
(IC : InitialConditions)
:
theorem
ClassicalMechanics.HarmonicOscillator.neg_pi_lt_phase
(S : HarmonicOscillator)
(IC : InitialConditions)
:
@[simp]
theorem
ClassicalMechanics.HarmonicOscillator.amplitude_mul_cos_phase
(S : HarmonicOscillator)
(IC : InitialConditions)
:
theorem
ClassicalMechanics.HarmonicOscillator.amplitude_mul_sin_phase
(S : HarmonicOscillator)
(IC : InitialConditions)
:
theorem
ClassicalMechanics.HarmonicOscillator.abs_sol_le_amplitude
(S : HarmonicOscillator)
(IC : InitialConditions)
(t : ℝ)
:
@[simp]
theorem
ClassicalMechanics.HarmonicOscillator.sol_t_zero
(S : HarmonicOscillator)
(IC : InitialConditions)
:
theorem
ClassicalMechanics.HarmonicOscillator.sol_differentiable
(S : HarmonicOscillator)
(IC : InitialConditions)
:
Differentiable ℝ (S.sol IC)
@[simp]
theorem
ClassicalMechanics.HarmonicOscillator.sol_velocity_t_zero
(S : HarmonicOscillator)
(IC : InitialConditions)
:
theorem
ClassicalMechanics.HarmonicOscillator.sol_action
(S : HarmonicOscillator)
(IC : InitialConditions)
(t1 t2 : ℝ)
: