WithDim #
WithDim is the type M
which carrying the dimension d
.
instance
WithDim.instCarriesDimension
(d : Dimension)
(M : Type)
[inst : MulAction NNReal M]
:
CarriesDimension (WithDim d M)
Equations
- WithDim.instCarriesDimension d M = { toMulAction := WithDim.instMulActionNNReal d M, d := d }
@[simp]
@[simp]
theorem
WithDim.scaleUnit_val_eq_scaleUnit_val
{d : Dimension}
(M : Type)
[MulAction NNReal M]
(u1 u2 : UnitChoices)
(m1 m2 : WithDim d M)
:
theorem
WithDim.scaleUnit_val_eq_scaleUnit_val_of_dim_eq
{d1 d2 : Dimension}
{M : Type}
[MulAction NNReal M]
{u1 u2 : UnitChoices}
{m1 : WithDim d1 M}
{m2 : WithDim d2 M}
(h : d1 = d2 := by
ext <;>
{ simp; try ring
})
:
theorem
WithDim.scaleUnit_val
{d : Dimension}
(M : Type)
[MulAction NNReal M]
(u1 u2 : UnitChoices)
(m1 : WithDim d M)
:
Division #
@[simp]
theorem
WithDim.div_scaleUnit
{d1 d2 : Dimension}
(m1 : WithDim d1 ℝ)
(m2 : WithDim d2 ℝ)
(u1 u2 : UnitChoices)
:
UnitDependent.scaleUnit u1 u2 m1 / UnitDependent.scaleUnit u1 u2 m2 = UnitDependent.scaleUnit u1 u2 (m1 / m2)
@[simp]
theorem
WithDim.scaleUnit_dim_eq_zero
{d : Dimension}
(m : WithDim d ℝ)
(u1 u2 : UnitChoices)
(h : d = 1 := by
ext <;>
{ simp; try ring
})
:
Casting #
@[simp]
theorem
WithDim.cast_scaleUnit
{d d2 : Dimension}
{M : Type}
[MulAction NNReal M]
(m : WithDim d M)
(h : d = d2)
(u1 u2 : UnitChoices)
: