Ideal gas: basic entropy and adiabatic relations #
In this module we formalize a simple thermodynamic model of a monophase ideal gas. We:
Define the entropy S(U,V,N) = N s₀ + N R (c \log(U/U₀) + \log(V/V₀) - (c+1)\log(N/N₀)),
Prove equivalent formulations of the adiabatic relation for two states (U_a, V_a) and (U_b, V_b) at fixed N:
- c \log(U_a/U_b) + \log(V_a/V_b) = 0,
- (U_a/U_b)^c (V_a/V_b) = 1,
- U_a^c V_a = U_b^c V_b (the latter follows from (2)).
theorem
adiabatic_relation_log
{s0 U0 V0 N0 c R Ua Ub Va Vb N : ℝ}
(hUa : 0 < Ua)
(hUb : 0 < Ub)
(hVa : 0 < Va)
(hVb : 0 < Vb)
(hN : 0 < N)
(hU0 : 0 < U0)
(hV0 : 0 < V0)
(hR : 0 < R)
(hS : entropy c R s0 U0 V0 N0 Ua Va N = entropy c R s0 U0 V0 N0 Ub Vb N)
:
Adiabatic relation in logarithmic form: If S(Ua,Va,N) = S(Ub,Vb,N) with N fixed, then c * log (Ua/Ub) + log (Va/Vb) = 0.
theorem
adiabatic_relation_UaUbVaVb
{s0 U0 V0 N0 c R Ua Ub Va Vb N : ℝ}
(hUa : 0 < Ua)
(hUb : 0 < Ub)
(hVa : 0 < Va)
(hVb : 0 < Vb)
(hN : 0 < N)
(hU0 : 0 < U0)
(hV0 : 0 < V0)
(hR : 0 < R)
(hS : entropy c R s0 U0 V0 N0 Ua Va N = entropy c R s0 U0 V0 N0 Ub Vb N)
:
Adiabatic relation in product form: If S(Ua,Va,N) = S(Ub,Vb,N) with N fixed, then (Ua/Ub)^c * (Va/Vb) = 1.