PhysLean Documentation

PhysLean.Thermodynamics.IdealGas.Basic

Ideal gas: basic entropy and adiabatic relations #

In this module we formalize a simple thermodynamic model of a monophase ideal gas. We:

def entropy (c R s0 U0 V0 N0 U V N : ) :

Entropy of a monophase ideal gas: S(U,V,N) = N s0 + N R (c log(U/U0) + log(V/V0) - (c+1) log(N/N0)).

Equations
Instances For
    theorem adiabatic_relation_log {s0 U0 V0 N0 c R Ua Ub Va Vb N : } (hUa : 0 < Ua) (hUb : 0 < Ub) (hVa : 0 < Va) (hVb : 0 < Vb) (hN : 0 < N) (hU0 : 0 < U0) (hV0 : 0 < V0) (hR : 0 < R) (hS : entropy c R s0 U0 V0 N0 Ua Va N = entropy c R s0 U0 V0 N0 Ub Vb N) :
    c * Real.log (Ua / Ub) + Real.log (Va / Vb) = 0

    Adiabatic relation in logarithmic form: If S(Ua,Va,N) = S(Ub,Vb,N) with N fixed, then c * log (Ua/Ub) + log (Va/Vb) = 0.

    theorem adiabatic_relation_UaUbVaVb {s0 U0 V0 N0 c R Ua Ub Va Vb N : } (hUa : 0 < Ua) (hUb : 0 < Ub) (hVa : 0 < Va) (hVb : 0 < Vb) (hN : 0 < N) (hU0 : 0 < U0) (hV0 : 0 < V0) (hR : 0 < R) (hS : entropy c R s0 U0 V0 N0 Ua Va N = entropy c R s0 U0 V0 N0 Ub Vb N) :
    (Ua / Ub).rpow c * (Va / Vb) = 1

    Adiabatic relation in product form: If S(Ua,Va,N) = S(Ub,Vb,N) with N fixed, then (Ua/Ub)^c * (Va/Vb) = 1.