SpaceStruct d
#
This is a work in progress reimplmentation of Space d
that abstracts over the underlying EuclideanSpace
Space d
is planned to be deprecated in favor of SpaceStruct d
.
Once the necessary components are migrated to be compatible with SpaceStruct
,
it will become the default implementation of Space
The type SpaceStruct d
representes d
dimensional Euclidean space.
The default value of d
is 3
. Thus SpaceStuct = Spacestruct 3
.
- val : EuclideanSpace ℝ (Fin d)
The underlying EuclideanSpace associated
SpaceStruct d
Instances For
Basic operations on Space
. #
Equations
- instAddSpaceStruct = { add := fun (x y : SpaceStruct d) => { val := x.val + y.val } }
Equations
- instNegSpaceStruct = { neg := fun (x : SpaceStruct d) => { val := -x.val } }
Equations
- instSubSpaceStruct = { sub := fun (x y : SpaceStruct d) => { val := x.val - y.val } }
Equations
- instSMulRealSpaceStruct = { smul := fun (k : ℝ) (x : SpaceStruct d) => { val := k • x.val } }
Equations
- instInnerRealSpaceStruct d = { inner := fun (x y : SpaceStruct d) => inner ℝ x.val y.val }
noncomputable instance
instVAddEuclideanSpaceRealFinSpaceStruct
{d : ℕ}
:
VAdd (EuclideanSpace ℝ (Fin d)) (SpaceStruct d)
Equations
- instVAddEuclideanSpaceRealFinSpaceStruct = { vadd := fun (v : EuclideanSpace ℝ (Fin d)) (s : SpaceStruct d) => { val := v + s.val } }
Instances on Space
#
Equations
- One or more equations did not get rendered due to their size.
Equations
- instAddCommMonoidSpaceStruct = { toAddMonoid := instAddGroupSpaceStruct.toAddMonoid, add_comm := ⋯ }
Equations
- instAddCommGroupSpaceStruct = { toAddGroup := instAddGroupSpaceStruct, add_comm := ⋯ }