SpaceStruct d #
This is a work in progress reimplementation of Space d
that abstracts over the underlying EuclideanSpace
Space d is planned to be deprecated in favor of SpaceStruct d.
Once the necessary components are migrated to be compatible with SpaceStruct,
it will become the default implementation of Space
The type SpaceStruct d represents d dimensional Euclidean space.
The default value of d is 3. Thus SpaceStuct = Spacestruct 3.
- val : EuclideanSpace ℝ (Fin d)
The underlying EuclideanSpace associated
SpaceStruct d
Instances For
Basic operations on Space. #
Equations
- instAddSpaceStruct = { add := fun (x y : SpaceStruct d) => { val := x.val + y.val } }
Equations
- instNegSpaceStruct = { neg := fun (x : SpaceStruct d) => { val := -x.val } }
Equations
- instSubSpaceStruct = { sub := fun (x y : SpaceStruct d) => { val := x.val - y.val } }
Equations
- instSMulRealSpaceStruct = { smul := fun (k : ℝ) (x : SpaceStruct d) => { val := k • x.val } }
Equations
- instInnerRealSpaceStruct d = { inner := fun (x y : SpaceStruct d) => inner ℝ x.val y.val }
noncomputable instance
instVAddEuclideanSpaceRealFinSpaceStruct
{d : ℕ}
:
VAdd (EuclideanSpace ℝ (Fin d)) (SpaceStruct d)
Equations
- instVAddEuclideanSpaceRealFinSpaceStruct = { vadd := fun (v : EuclideanSpace ℝ (Fin d)) (s : SpaceStruct d) => { val := v + s.val } }
Instances on Space #
Equations
- One or more equations did not get rendered due to their size.
Equations
- instAddCommMonoidSpaceStruct = { toAddMonoid := instAddGroupSpaceStruct.toAddMonoid, add_comm := ⋯ }
Equations
- instAddCommGroupSpaceStruct = { toAddGroup := instAddGroupSpaceStruct, add_comm := ⋯ }