Distributions which are constant in time #
i. Overview #
in this module given a distribution on Space d, we define the associated distribution
on Time × Space d which is constant in time.
This is defined by integrating Schwartz Maps on Time × Space d over the time coordinate,
to get a Schwartz Map on Space d.
ii. Key results #
Space.timeIntegralSchwartz: the integral over time of a Schwartz map onTime × Space dto give a Schwartz map onSpace d.Space.constantTime: the distribution onTime × Space dassociated with a distribution onSpace d, which is constant in time.
iii. Table of contents #
- A. Properties of time integrals of Schwartz maps
- A.1. Continuity as a function of space
- A.2. Derivative a function of space
- A.3. Differentiability as a function of space
- A.4. Integrability of the derivative as a function of space
- A.5. Smoothness as a function of space
- B. Properties of schwartz maps at a constant space point
- B.1. Integrability
- B.2. Integrability of powers times norm of iterated derivatives
- B.2.1. Bounds on powers times norm of iterated derivatives
- B.2.2. Integrability of powers times norm of iterated derivatives
- B.3. Integrability of iterated derivatives
- C. Decay results for derivatives of the time integral
- C.1. Moving the iterated derivative inside the time integral
- C.2. Bound on the norm of iterated derivative
- C.3. Bound on the norm of iterated derivative mul a power
- D. The time integral as a schwartz map
- E. Constant time distributions
- E.1. Space derivatives of constant time distributions
- E.2. Space gradient of constant time distributions
- E.3. Space divergence of constant time distributions
- E.4. Space curl of constant time distributions
- E.5. Time derivative of constant time distributions
iv. References #
A. Properties of time integrals of Schwartz maps #
A.1. Continuity as a function of space #
A.2. Derivative a function of space #
A.3. Differentiability as a function of space #
A.4. Integrability of the derivative as a function of space #
A.5. Smoothness as a function of space #
B. Properties of schwartz maps at a constant space point #
B.1. Integrability #
theorem
Space.integrable_time_integral
{d : ℕ}
(η : SchwartzMap (Time × Space d.succ) ℝ)
(x : Space d.succ)
:
MeasureTheory.Integrable (fun (t : Time) => η (t, x)) MeasureTheory.volume
B.2. Integrability of powers times norm of iterated derivatives #
B.2.1. Bounds on powers times norm of iterated derivatives #
theorem
Space.pow_mul_iteratedFDeriv_norm_le
{n m d : ℕ}
:
∃ (rt : ℕ),
∀ (η : SchwartzMap (Time × Space d.succ) ℝ) (x : Space d.succ),
MeasureTheory.Integrable (fun (x : Time) => ‖((1 + ‖x‖) ^ rt)⁻¹‖) MeasureTheory.volume ∧ ∀ (t : Time),
‖(t, x)‖ ^ m * ‖iteratedFDeriv ℝ n ⇑η (t, x)‖ ≤ 2 ^ (rt + m, n).1 * ((Finset.Iic (rt + m, n)).sup fun (m : ℕ × ℕ) => SchwartzMap.seminorm ℝ m.1 m.2) η * ‖(1 + ‖t‖) ^ rt‖⁻¹
B.2.2. Integrability of powers times norm of iterated derivatives #
B.3. Integrability of iterated derivatives #
theorem
Space.iteratedFDeriv_norm_integrable
{n d : ℕ}
(η : SchwartzMap (Time × Space d.succ) ℝ)
(x : Space d.succ)
:
MeasureTheory.Integrable (fun (t : Time) => ‖iteratedFDeriv ℝ n ⇑η (t, x)‖) MeasureTheory.volume
theorem
Space.iteratedFDeriv_integrable
{n d : ℕ}
(η : SchwartzMap (Time × Space d.succ) ℝ)
(x : Space d.succ)
:
MeasureTheory.Integrable (fun (t : Time) => iteratedFDeriv ℝ n ⇑η (t, x)) MeasureTheory.volume
C. Decay results for derivatives of the time integral #
C.1. Moving the iterated derivative inside the time integral #
C.2. Bound on the norm of iterated derivative #
C.3. Bound on the norm of iterated derivative mul a power #
theorem
Space.time_integral_mul_pow_iteratedFDeriv_norm_le
{d : ℕ}
(n m : ℕ)
:
∃ (rt : ℕ),
∀ (η : SchwartzMap (Time × Space d.succ) ℝ) (x : Space d.succ),
MeasureTheory.Integrable (fun (x : Time) => ‖((1 + ‖x‖) ^ rt)⁻¹‖) MeasureTheory.volume ∧ ‖x‖ ^ m * ‖iteratedFDeriv ℝ n (fun (x : Space d.succ) => ∫ (t : Time), η (t, x)) x‖ ≤ (∫ (t : Time), ‖((1 + ‖t‖) ^ rt)⁻¹‖) * ‖ContinuousLinearMap.prod 0 (ContinuousLinearMap.id ℝ (Space d.succ))‖ ^ n * (2 ^ (rt + m, n).1 * ((Finset.Iic (rt + m, n)).sup fun (m : ℕ × ℕ) => SchwartzMap.seminorm ℝ m.1 m.2) η)
D. The time integral as a schwartz map #
The continuous linear map taking Schwartz maps on Time × Space d to
space d by integrating over time.
Equations
Instances For
E. Constant time distributions #
Distributions on Time × Space d from distributions on Space d.
These distributions are constant in time.
Equations
- Space.constantTime = { toFun := fun (f : (Space d.succ)→d[ℝ] M) => ContinuousLinearMap.comp f Space.timeIntegralSchwartz, map_add' := ⋯, map_smul' := ⋯ }
Instances For
theorem
Space.constantTime_apply
{M : Type}
[NormedAddCommGroup M]
[NormedSpace ℝ M]
{d : ℕ}
(f : (Space d.succ)→d[ℝ] M)
(η : SchwartzMap (Time × Space d.succ) ℝ)
:
E.1. Space derivatives of constant time distributions #
theorem
Space.constantTime_spaceDerivD
{M : Type}
{d : ℕ}
[NormedAddCommGroup M]
[NormedSpace ℝ M]
(i : Fin d.succ)
(f : (Space d.succ)→d[ℝ] M)
:
E.2. Space gradient of constant time distributions #
E.3. Space divergence of constant time distributions #
E.4. Space curl of constant time distributions #
E.5. Time derivative of constant time distributions #
@[simp]
theorem
Space.constantTime_timeDerivD
{M : Type}
[NormedAddCommGroup M]
[NormedSpace ℝ M]
{d : ℕ}
(f : (Space d.succ)→d[ℝ] M)
: