Discrete color category #
def
IndexNotation.OverColor.Discrete.pair
{C k : Type}
[CommRing k]
{G : Type}
[Group G]
(F : CategoryTheory.Functor (CategoryTheory.Discrete C) (Rep k G))
:
CategoryTheory.Functor (CategoryTheory.Discrete C) (Rep k G)
The functor taking c
to F c ⊗ F c
.
Equations
Instances For
def
IndexNotation.OverColor.Discrete.pairτ
{C k : Type}
[CommRing k]
{G : Type}
[Group G]
(F : CategoryTheory.Functor (CategoryTheory.Discrete C) (Rep k G))
(τ : C → C)
:
CategoryTheory.Functor (CategoryTheory.Discrete C) (Rep k G)
The functor taking c
to F c ⊗ F (τ c)
.
Equations
Instances For
theorem
IndexNotation.OverColor.Discrete.pairτ_tmul
{C k : Type}
[CommRing k]
{G : Type}
[Group G]
(F : CategoryTheory.Functor (CategoryTheory.Discrete C) (Rep k G))
{τ : C → C}
{c1 c : C}
(x : ↑(F.obj { as := c }).V)
(y :
↑(((Action.functorCategoryEquivalence (ModuleCat k) ↑(MonCat.of G)).symm.inverse.obj
(((CategoryTheory.Discrete.functor (CategoryTheory.Discrete.mk ∘ τ)).comp F).obj { as := c })).obj
PUnit.unit))
(h : c = c1)
:
(CategoryTheory.ConcreteCategory.hom ((pairτ F τ).map (CategoryTheory.Discrete.eqToHom h)).hom) (x ⊗ₜ[k] y) = (CategoryTheory.ConcreteCategory.hom (F.map (CategoryTheory.Discrete.eqToHom h)).hom) x ⊗ₜ[k] (CategoryTheory.ConcreteCategory.hom (F.map (CategoryTheory.Discrete.eqToHom ⋯)).hom) y
def
IndexNotation.OverColor.Discrete.τPair
{C k : Type}
[CommRing k]
{G : Type}
[Group G]
(F : CategoryTheory.Functor (CategoryTheory.Discrete C) (Rep k G))
(τ : C → C)
:
CategoryTheory.Functor (CategoryTheory.Discrete C) (Rep k G)
The functor taking c
to F (τ c) ⊗ F c
.