Contraction of Lorentz vectors #
The linear map from complexContr ⊗ complexCo to ℂ given by summing over components of contravariant Lorentz vector and covariant Lorentz vector in the standard basis (i.e. the dot product). In terms of index notation this is the contraction is ψⁱ φᵢ.
Equations
Instances For
theorem
Lorentz.contrCoContraction_basis
(i j : Fin 4)
:
(CategoryTheory.ConcreteCategory.hom contrCoContraction.hom) (complexContrBasisFin4 i ⊗ₜ[ℂ] complexCoBasisFin4 j) = if ↑i = ↑j then 1 else 0
theorem
Lorentz.contrCoContraction_basis'
(i j : Fin 1 ⊕ Fin 3)
:
(CategoryTheory.ConcreteCategory.hom contrCoContraction.hom) (complexContrBasis i ⊗ₜ[ℂ] complexCoBasis j) = if i = j then 1 else 0
The linear map from complexCo ⊗ complexContr to ℂ given by summing over components of covariant Lorentz vector and contravariant Lorentz vector in the standard basis (i.e. the dot product). In terms of index notation this is the contraction is φᵢ ψⁱ.
Equations
Instances For
theorem
Lorentz.coContrContraction_basis
(i j : Fin 4)
:
(CategoryTheory.ConcreteCategory.hom coContrContraction.hom) (complexCoBasisFin4 i ⊗ₜ[ℂ] complexContrBasisFin4 j) = if ↑i = ↑j then 1 else 0
theorem
Lorentz.coContrContraction_basis'
(i j : Fin 1 ⊕ Fin 3)
:
(CategoryTheory.ConcreteCategory.hom coContrContraction.hom) (complexCoBasis i ⊗ₜ[ℂ] complexContrBasis j) = if i = j then 1 else 0