The 1d QM system with general potential #
The momentum operator is defined as the map from ℝ → ℂ
to ℝ → ℂ
taking
ψ
to - i ℏ ψ'
.
The notation Pᵒᵖ
can be used for the momentum operator.
Instances For
theorem
QuantumMechanics.OneDimension.momentumOperator_linear
(ℏ : ℝ)
(a1 a2 : ℂ)
(ψ1 ψ2 : ℝ → ℂ)
(hψ1_x : Differentiable ℝ ψ1)
(hψ2_x : Differentiable ℝ ψ2)
:
theorem
QuantumMechanics.OneDimension.momentumOperator_sq_linear
(ℏ : ℝ)
(a1 a2 : ℂ)
(ψ1 ψ2 : ℝ → ℂ)
(hψ1_x : Differentiable ℝ ψ1)
(hψ2_x : Differentiable ℝ ψ2)
(hψ1_xx : Differentiable ℝ (momentumOperator ℏ ψ1))
(hψ2_xx : Differentiable ℝ (momentumOperator ℏ ψ2))
:
momentumOperator ℏ (momentumOperator ℏ (a1 • ψ1 + a2 • ψ2)) = a1 • momentumOperator ℏ (momentumOperator ℏ ψ1) + a2 • momentumOperator ℏ (momentumOperator ℏ ψ2)
The position operator is defined as the map from ℝ → ℂ
to ℝ → ℂ
taking
ψ
to x ψ'
.
Equations
- QuantumMechanics.OneDimension.positionOperator ψ x = ↑x * ψ x
Instances For
noncomputable def
QuantumMechanics.OneDimension.GeneralPotential.schrodingerOperator
(Q : GeneralPotential)
(ψ : ℝ → ℂ)
:
For a 1D quantum mechanical system in potential V
, the Schrodinger Operator corresponding
to it is defined as the function from ℝ → ℂ
to ℝ → ℂ
taking
ψ ↦ - ℏ^2 / (2 * m) * ψ'' + V(x) * ψ
.
Equations
- Q.schrodingerOperator ψ x = 1 / (2 * ↑Q.m) * QuantumMechanics.OneDimension.momentumOperator Q.ℏ (QuantumMechanics.OneDimension.momentumOperator Q.ℏ ψ) x + ↑(Q.V x) * ψ x
Instances For
theorem
QuantumMechanics.OneDimension.GeneralPotential.schrodingerOperator_linear
(Q : GeneralPotential)
(a1 a2 : ℂ)
(ψ1 ψ2 : ℝ → ℂ)
(hψ1_x : Differentiable ℝ ψ1)
(hψ2_x : Differentiable ℝ ψ2)
(hψ1_xx : Differentiable ℝ (momentumOperator Q.ℏ ψ1))
(hψ2_xx : Differentiable ℝ (momentumOperator Q.ℏ ψ2))
:
Q.schrodingerOperator (a1 • ψ1 + a2 • ψ2) = a1 • Q.schrodingerOperator ψ1 + a2 • Q.schrodingerOperator ψ2