PhysLean Documentation

PhysLean.QuantumMechanics.OneDimension.GeneralPotential.Basic

The 1d QM system with general potential #

theorem QuantumMechanics.OneDimension.momentumOperator_linear (a1 a2 : ) (ψ1 ψ2 : ) (hψ1_x : Differentiable ψ1) (hψ2_x : Differentiable ψ2) :
noncomputable def QuantumMechanics.OneDimension.potentialOperator (V : ) (ψ : ) :

The potential operator is defined as the map from ℝ → ℂ to ℝ → ℂ taking ψ to V(x) ψ.

Equations
Instances For
    theorem QuantumMechanics.OneDimension.potentialOperator_linear (V : ) (a1 a2 : ) (ψ1 ψ2 : ) :
    potentialOperator V (a1 ψ1 + a2 ψ2) = a1 potentialOperator V ψ1 + a2 potentialOperator V ψ2

    A quantum mechanical system in 1D is specified by a three real parameters: the mass of the particle m, a value of Planck's constant , and a potential function V

    • m :

      The mass of the particle.

    • V :

      The potential.

    • hm : 0 < self.m
    Instances For

      For a 1D quantum mechanical system in potential V, the Schrodinger Operator corresponding to it is defined as the function from ℝ → ℂ to ℝ → ℂ taking

      ψ ↦ - ℏ^2 / (2 * m) * ψ'' + V(x) * ψ.

      Equations
      Instances For