PhysLean Documentation
PhysLean
.
QuantumMechanics
.
FiniteTarget
.
HilbertSpace
Search
Google site search
return to top
source
Imports
Init
Mathlib.Analysis.CStarAlgebra.Classes
Mathlib.Analysis.InnerProductSpace.PiL2
PhysLean.Meta.TODO.Basic
Imported by
QuantumMechanics
.
FiniteHilbertSpace
QuantumMechanics
.
instAddCommGroupFiniteHilbertSpace
QuantumMechanics
.
instModuleComplexFiniteHilbertSpace
QuantumMechanics
.
instNormedAddCommGroupFiniteHilbertSpace
QuantumMechanics
.
instInnerProductSpaceComplexFiniteHilbertSpace
QuantumMechanics
.
instCompleteSpaceFiniteHilbertSpace
The Hilbert space of a finite target quantum mechanical system
#
source
def
QuantumMechanics
.
FiniteHilbertSpace
(
n
:
ℕ
)
:
Type
The finite dimensional Hilbert space of dimension
n
.
Equations
QuantumMechanics.FiniteHilbertSpace
n
=
EuclideanSpace
ℂ
(
Fin
n
)
Instances For
source
instance
QuantumMechanics
.
instAddCommGroupFiniteHilbertSpace
{
n
:
ℕ
}
:
AddCommGroup
(
FiniteHilbertSpace
n
)
Equations
QuantumMechanics.instAddCommGroupFiniteHilbertSpace
=
inferInstanceAs
(
AddCommGroup
(
EuclideanSpace
ℂ
(
Fin
n
)
)
)
source
noncomputable instance
QuantumMechanics
.
instModuleComplexFiniteHilbertSpace
{
n
:
ℕ
}
:
Module
ℂ
(
FiniteHilbertSpace
n
)
Equations
QuantumMechanics.instModuleComplexFiniteHilbertSpace
=
inferInstanceAs
(
Module
ℂ
(
EuclideanSpace
ℂ
(
Fin
n
)
)
)
source
noncomputable instance
QuantumMechanics
.
instNormedAddCommGroupFiniteHilbertSpace
{
n
:
ℕ
}
:
NormedAddCommGroup
(
FiniteHilbertSpace
n
)
Equations
QuantumMechanics.instNormedAddCommGroupFiniteHilbertSpace
=
inferInstanceAs
(
NormedAddCommGroup
(
EuclideanSpace
ℂ
(
Fin
n
)
)
)
source
noncomputable instance
QuantumMechanics
.
instInnerProductSpaceComplexFiniteHilbertSpace
{
n
:
ℕ
}
:
InnerProductSpace
ℂ
(
FiniteHilbertSpace
n
)
Equations
QuantumMechanics.instInnerProductSpaceComplexFiniteHilbertSpace
=
inferInstanceAs
(
InnerProductSpace
ℂ
(
EuclideanSpace
ℂ
(
Fin
n
)
)
)
source
instance
QuantumMechanics
.
instCompleteSpaceFiniteHilbertSpace
{
n
:
ℕ
}
:
CompleteSpace
(
FiniteHilbertSpace
n
)