Invariants of the CKM Matrix #
The CKM matrix is only defined up to an equivalence.
This file defines some invariants of the CKM matrix, which are well-defined with respect to this equivalence.
Of note, this file defines the complex jarlskog invariant.
The complex jarlskog invariant for a CKM matrix.
Equations
- Invariant.jarlskogℂCKM V = ↑V 0 1 * ↑V 1 2 * (starRingEnd ℂ) (↑V 0 2) * (starRingEnd ℂ) (↑V 1 1)
Instances For
@[simp]
theorem
Invariant.jarlskogℂCKM_im
(V : CKMMatrix)
:
(jarlskogℂCKM V).im = -((((↑V 0 1).re * (↑V 1 2).re - (↑V 0 1).im * (↑V 1 2).im) * (↑V 0 2).re + ((↑V 0 1).re * (↑V 1 2).im + (↑V 0 1).im * (↑V 1 2).re) * (↑V 0 2).im) * (↑V 1 1).im) + (-(((↑V 0 1).re * (↑V 1 2).re - (↑V 0 1).im * (↑V 1 2).im) * (↑V 0 2).im) + ((↑V 0 1).re * (↑V 1 2).im + (↑V 0 1).im * (↑V 1 2).re) * (↑V 0 2).re) * (↑V 1 1).re
@[simp]
theorem
Invariant.jarlskogℂCKM_re
(V : CKMMatrix)
:
(jarlskogℂCKM V).re = (((↑V 0 1).re * (↑V 1 2).re - (↑V 0 1).im * (↑V 1 2).im) * (↑V 0 2).re + ((↑V 0 1).re * (↑V 1 2).im + (↑V 0 1).im * (↑V 1 2).re) * (↑V 0 2).im) * (↑V 1 1).re + (-(((↑V 0 1).re * (↑V 1 2).re - (↑V 0 1).im * (↑V 1 2).im) * (↑V 0 2).im) + ((↑V 0 1).re * (↑V 1 2).im + (↑V 0 1).im * (↑V 1 2).re) * (↑V 0 2).re) * (↑V 1 1).im
The complex jarlskog invariant is equal for equivalent CKM matrices.
The complex jarlskog invariant for an equivalence class of CKM matrices.
Instances For
An invariant for CKM matrices corresponding to the square of the absolute values
of the us
, ub
and cb
elements multiplied together divided by (VudAbs V ^ 2 + VusAbs V ^2)
.
Equations
Instances For
An invariant for CKM matrices. The argument of this invariant is δ₁₃
in the
standard parameterization.