PhysLean Documentation

PhysLean.Particles.FlavorPhysics.CKMMatrix.Invariants

Invariants of the CKM Matrix #

The CKM matrix is only defined up to an equivalence.

This file defines some invariants of the CKM matrix, which are well-defined with respect to this equivalence.

Of note, this file defines the complex jarlskog invariant.

The complex jarlskog invariant for a CKM matrix.

Equations
Instances For
    @[simp]
    theorem Invariant.jarlskogℂCKM_im (V : CKMMatrix) :
    (jarlskogℂCKM V).im = -((((V 0 1).re * (V 1 2).re - (V 0 1).im * (V 1 2).im) * (V 0 2).re + ((V 0 1).re * (V 1 2).im + (V 0 1).im * (V 1 2).re) * (V 0 2).im) * (V 1 1).im) + (-(((V 0 1).re * (V 1 2).re - (V 0 1).im * (V 1 2).im) * (V 0 2).im) + ((V 0 1).re * (V 1 2).im + (V 0 1).im * (V 1 2).re) * (V 0 2).re) * (V 1 1).re
    @[simp]
    theorem Invariant.jarlskogℂCKM_re (V : CKMMatrix) :
    (jarlskogℂCKM V).re = (((V 0 1).re * (V 1 2).re - (V 0 1).im * (V 1 2).im) * (V 0 2).re + ((V 0 1).re * (V 1 2).im + (V 0 1).im * (V 1 2).re) * (V 0 2).im) * (V 1 1).re + (-(((V 0 1).re * (V 1 2).re - (V 0 1).im * (V 1 2).im) * (V 0 2).im) + ((V 0 1).re * (V 1 2).im + (V 0 1).im * (V 1 2).re) * (V 0 2).re) * (V 1 1).im

    The complex jarlskog invariant is equal for equivalent CKM matrices.

    The complex jarlskog invariant for an equivalence class of CKM matrices.

    Equations
    Instances For

      An invariant for CKM matrices corresponding to the square of the absolute values of the us, ub and cb elements multiplied together divided by (VudAbs V ^ 2 + VusAbs V ^2).

      Equations
      Instances For

        An invariant for CKM matrices. The argument of this invariant is δ₁₃ in the standard parameterization.

        Equations
        Instances For